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Abstract 

The aggregation of typical home computers 

through a peer-to-peer (P2P) framework over the 

Internet would yield a virtual supercomputer of un-
matched processing power, 95% of which is presently 

being left unutilized. However, the global community 

appears to be still hesitant at tapping into the well of 

unharnessed potential offered by exploiting distributed 

computing. Reasons include the lack of personal in-

centive for participants, and the high degree of exper-

tise required from application developers.  

Our vision is to tackle the aforementioned obsta-

cles by building a P2P system capable of deploying 

user-defined tasks onto the network for distributed 

execution. Users would only be expected to write 

standard concurrent code accessing our application 

programming interface, and may rely on the system to 

transparently provide for optimal task distribution, 

process migration, message delivery, global state, 

fault tolerance, and recovery. Strong mobility during 

process migration is achieved by pre-processing the 

source code. Our results indicate that near-linear effi-
ciencies – approximately 94% ± 2% of the optimal – 

may be obtained for adequately coarse-grained appli-

cations, even when deployed on a heterogeneous net-

work. 

1. Introduction and Background 

An enticing eventuality of any promising novelty is 

its evolution from an esoteric research area to an un-

bounded opportunity for the masses. Quintessential 

technological phenomena include the Internet enabling 

global connectivity [1], the World Wide Web provid-

ing us with a virtually-unlimited repository of infor-

mation [2], and peer-to-peer (P2P) file-sharing appli-
cations facilitating the unhindered distribution of any 

form of media [3]. One area which, however, appears 

to be lagging behind is that of exploiting distributed 

computing power [4]. 
This is somewhat disconcerting, since the aggrega-

tion of typical home computers through a P2P frame-

work over the Internet would yield a virtual super-

computer of unmatched processing power [5]. Fur-

thermore, most of this power is presently being left 

unutilized; Schrage [6] and Davies [7] both report 

95% CPU idle-time on typical powered workstations. 

If the surplus processing power of a group of com-

puters could be pooled for consumption by users un-

dergoing peak utilization periods, one would boost 

both throughput and efficiency, and mutual benefit 

would be derived by all participating parties [8].  

Reasons which could account for the global com-

munity’s hesitation at tapping into this well of unhar-

nessed potential are various. Lack of personal incen-

tive for participants could be an issue [5] – today’s 

best-known distributed supercomputing applications, 
such as SETI@home, primarily benefit the developing 

entity rather than the participating home users. Many 

developers perceive a problem of accessibility, in that 

developing distributed applications often requires a 

high degree of expertise [9], rendering it an area ex-

clusive to specialists. Furthermore, there is the inher-

ent issue of having to provide for fault tolerance. Due 

to the dynamic nature of P2P networks, nodes may 

join or leave the network in an ad hoc manner, making 

it imperative for the application developer to imple-

ment redundancy and recovery measures [3] – a pre-

caution which would be unnecessary on stable archi-

tectures, such as Grids [10]. 

1.1. Assimilation of Technologies 

There are several fields of research which could 

give a positive contribution to the actualization of a 

distributed computing system. An eclectic assimilation 

of all such technologies would ensure a holistic treat-

ment of the problem. 
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The Grid is a platform which aggregates heteroge-

neous collections of resources into a coherent infra-

structure, affording users with reliable, cost-effective, 

and ready access to their capabilities [4]. Grid compo-

nents are generally distributed (geographically dis-

persed), heterogeneous, and dynamic [11]. Nonethe-

less, such components may be accessed, individually 

or collectively, through a uniform interface, thereby 

abstracting away the infrastructural complexities to 
provide a virtual platform for the application devel-

oper [12]. 

Peer-to-peer (P2P) systems involve the dynamic 

establishment of decentralised network topologies by 

the participating nodes. Whilst resource-sharing is 

egalitarian in principle, node connectivity is generally 

ad hoc; thus, the system must be inherently capable of 

accommodating transient populations [13]. Loo [5] 

argues that, with the pervasion of high-end personal 

computers and high-bandwidth connections, the Inter-

net’s power is shifting back to its periphery; therefore, 

P2P is the “next logical step” (succeeding the client–

server model) in the push towards maximising one’s 

efficient usage of computational resources. 

Autonomic computing entails the continuous ob-

servation and analysis of the (perceived) global state 

by the individual participants, and the reactive enact-
ment of strategies by the said participants to address 

the changing environment – all in an automated man-

ner. This allows the system to adapt rapidly to 

changes, and to exhibit resilience to adversities such 

as failing components, inaccurate resource advertise-

ments, or unforeseen circumstances [14]. 

Parallelism and concurrency serve as the theo-

retical background to distributed systems, setting out 

the laws and promises that one may expect. Amdahl 

[15] contends that the speedup attainable by distribut-

ing a parallelizable problem over multiple processors 

would not be linear, but rather, an exponential ap-

proach towards a maximum value determined by the 

sequential portion of the problem. However, Gustaf-

son [16] retorts that the relative size of the sequential 

portion of a problem can be reduced by expanding the 

parallelizable part – for example, by working at a 
greater precision or resolution. Communication over-

heads are gradually becoming less prevalent due to the 

fact that improvements in network performance are 

outpacing those of computational resources [17]. 

Process migration is the act of moving a process 

from one machine to another at runtime, preserving its 

execution state [18]. Strong mobility implies that the 

migration is transparent to the programmer. Low-level 

approaches for achieving strong mobility involve ex-

tending the operating system or virtual machine; high-

level strategies entail altering some aspect of the com-

pilation model, such as the original source code. 

2. Aim and Objectives 

Our aim is to design and implement a parallel proc-

essing framework which distributes user-defined tasks 

over a peer-to-peer network. Users would only be ex-

pected to write standard concurrent code accessing our 

application programming interface (API), and may 

rely on the system to transparently provide for optimal 

task distribution and fault tolerance guarantees, 

thereby addressing the issues discussed in the previous 

section. 

 

Figure 1. Our system (PPP2P) fits into the hour-
glass model, which is also used for Grids [17]. 
Connectivity is provided by the Windows Com-

munication Foundation (WCF). 

2.1. Objectives 

The aim is concretely realized through the follow-

ing objectives: 

Concurrency: The system distributes each task’s 

subtasks over several machines for simultaneous exe-

cution. Conversely, individual participant nodes are 

capable of executing multiple subtasks (possibly from 
different tasks) at the same time through multithread-

ing. 

Decentralisation: The structure of centralized to-

pologies yields “inefficiencies, bottlenecks, and 

wasted resources” [3]. A fully-decentralized system 

divides the cost of ownership fairly amongst all par-

ticipants, and avoids any central points of failure. 

Scalability: The system may accommodate any 

number of participant nodes without experiencing any 

significant performance degradation. The throughput 

of the system (in terms of the number of tasks it can 

complete in a given time interval) scales almost line-

arly with the number (and processing power) of par-

ticipating nodes available.  

Efficiency: The system embodies a degree of intel-

ligence for distributing tasks in an optimal manner. 

Each node maintains a partial or complete awareness 
of the composition of the global mesh, and delegates 

subtasks in a way that reduces their execution times 

and promotes overall throughput. 

Fabric 

WCF 

PPP2P 

Application 



 
 

Fault tolerance: Since a P2P system involves 

nodes leaving the network in an unannounced and 

nondeterministic manner, recovery mechanisms are 

enacted for resuming subtasks which had been dele-

gated to the departed nodes. This is achieved through 

a checkpointing strategy. 

Ease-of-use: The API is aspired to be appealing, 

user-friendly, and unobtrusive, to the extent that it 

could be easily utilised without requiring technical 
knowledge of the inner workings of the system.  

2.2. Features 

The following set of features (which is accessible 

through our API) spans a wide range of programming 

models, allowing the application developers to pick 

the subset which best suits their needs or methodol-

ogy: 

 The initialization and management of virtual 
computers which enrol the requested number of 

workers to participate in a particular task. 

 The management and deployment of virtual 

threads through virtual computers, with each vir-

tual thread encapsulating the execution of a spe-

cific subtask. 

 The returning of results to the user application 

once a virtual thread completes execution. (Note 

that this feature, along with the previous two, 

would suffice for a task-farming application.) 

 The reporting of partial results to the user ap-

plication during the virtual thread’s execution, 

using an event-driven approach. 

 Direct communication between any pair of vir-

tual threads using buffered message passing. 

 Mandatorily-synchronized access to global vari-

ables, whose values would be common to all vir-

tual threads within a virtual computer. 

 Checkpointing of the execution state of each in-
dividual virtual thread (using process migration), 

allowing it to be resumed on another peer if its 

host should disconnect or die. 

3. Design 

Our design strategy is aligned with the recent wave 

promoting the coalescence of Grid and P2P technolo-

gies [13], [19]. We provide a uniform interface for the 

exploitation of heterogeneous resources by independ-

ently-developed user applications (as in Grids), but 

support an egalitarian and ad hoc participation model 

(as in P2P). The stability of the infrastructure would 

be maintained dynamically using concepts borrowed 

from autonomic computing. 

 

Figure 2. The various usage scenarios under 
which our system may be employed,  

possibly simultaneously. 

3.1. Duality 

The system is designed to effectuate an interplay 

between two distinct but closely-interdependent pro-

jects. The Peer Controller, on one hand, handles the 

local peer’s participation in the P2P network. It as-

sumes responsibility for deploying tasks submitted by 

local clients (user applications), as well as contribut-

ing to the execution of tasks from other nodes’ clients 

(submitted through their respective Peer Controllers). 

The Leverage library, on the other hand, integrates 

with the user application, allowing it to utilize the 

functionality of the Peer Controller and, subsequently, 

the rest of the system. 

This arrangement implies that the system may be 

perceived through two different viewpoints: the struc-

tural architecture of the Peer Controller, and the virtu-

alisation platform given by the Leverage library. The 

functionality of the latter is enabled through the invo-
cation of the former; however, it is exposed to the user 

at a substantial level of virtualisation (abstraction), 

since several mechanisms – such as task distribution, 

migration, message delivery, global state, fault toler-

ance, and recovery – would be provided by the under-

lying system. 

3.2. Fault Tolerance 

The Pre-Processor is a passive component which 

prepares an application for strong mobility. Intended 

to be run before compiling the user application, it 

converts the source code to a version which explicitly 

maintains the execution state, but preserves the se-

mantics of the original code. 

At periodic intervals, each virtual thread would 

checkpoint itself by anticipatively migrating a copy of 
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its execution state to a remote node, where it is held in 

dormancy. Should the node executing the virtual 

thread undergo an unannounced departure, the virtual 

thread would be resumed, from its last checkpointed 

state, on another node. This is all performed transpar-

ently to the user application, which would not even be 

aware of the node failure or migration. 

4. Implementation 

4.1. Peer Controller 

Most of the mechanisms required for achieving the 

specified feature set are incorporated into the Peer 

Controller – the Leverage library only provides the 

access to these mechanisms. The Peer Controller is 

organized into an assemblage of functionally-cohesive 

components, each being responsible for some specific 

aspect of its activities or behaviours.  

The root of the composition hierarchy is, expect-

edly, the peer controller component. The participa-

tion manager has a twofold responsibility: periodi-

cally announcing the peer’s participation in the global 

mesh, and maintaining a (partial or complete) record 

of the other participating peers.  

The deployer initiates and manages a virtual com-

puter for a local leveraged client. The worker, on the 

other hand, enrols in a virtual computer established by 
a remote peer. It instantiates an executor for executing 

each virtual thread delegated to it by the remote de-

ployer. Peer unit proxies are responsible for estab-

lishing any direct connections required between peer 

units (namely, deployers and workers) for unicast 

communication. They provide a layer of location 

transparency for the virtual threads, allowing them to 

intercommunicate without needing to know whether 

the target virtual thread is being executed in the same 

worker or in a remote one. 

The assembly manager is responsible for retriev-

ing, caching, and loading assemblies. The address 

resolver is consulted by the worker proxy during mes-

sage passing; it resolves the virtual thread ID of the 

target virtual thread to the address of the (local or re-

mote) executor on which it is presently deployed. The 

message manager handles the buffered transfer of 
messages between virtual threads. The global vari-

able manager coordinates synchronized access to 

global variables. The worker quota maintainer en-

sures that the quota for the requested number of work-

ers to enrol in the virtual computer is maintained 

throughout its lifetime. The enrolment requestor 

issues worker enrolment requests to available peers 

concurrently in order to meet the quota for the re-

quested number of workers. Enrolment requestors are 

invoked either upon virtual computer initialization, or 

when the number of enrolled workers falls below the 

quota (because of node failures). Finally, the virtual 

thread delegator distributes virtual threads to the 

enrolled workers for execution. 

 

Figure 3. UML 2 class diagram for the  
structural architecture of the Peer Controller. 

4.2. Pre-Processor 

The Pre-Processor prepares the source code for 

strong mobility by subjecting it to a conversion se-

quence. It starts off by reading and parsing the source 

code, creating an abstract syntax tree (AST). Next, it 

passes the AST through a pipeline of visitors and 
transformers.  

Methods which may, directly or indirectly, invoke 

a checkpoint are encapsulated within inner classes; 

each inner class would represent the particular 

method’s stack frame. The body of each checkpoin-

table method is converted into a series of logical 

blocks, with each logical block being associated with a 

particular value of an artificial program counter. Pa-

rameters and local variables within the checkpointable 

methods are promoted to instance variables (fields) 
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within the encapsulating inner class, allowing their 

value to be serialized when a checkpoint is performed. 

Finally, the contents of the converted AST are out-

put back to a source code string, which may then be 

compiled into an ordinary .NET assembly.  

5. Evaluation 

To evaluate the capabilities of our system quantita-

tively, we developed a parallelizable version of a ge-
netic algorithm for the travelling salesman problem. 

We devised a scheme whereby each virtual thread 

would evolve its own population, yet interbreed its 

best chromosomes with the other virtual threads at 

regular intervals in order to promote convergence. 

Each virtual thread was deployed onto a dedicated 

peer to facilitate evaluation.  

Prevailing trends in Grid and P2P systems embrace 

participant heterogeneity congenitally [11], [13]. 

Therefore, we opted to run our tests on heterogeneous 

setups, using the definitions for speedup presented by 

Donaldson et al. [20], among others. The processing 

rate of a problem on a machine or heterogeneous sys-

tem,  or , is obtained by dividing the problem 

size by its execution time on the said machine or sys-

tem. The attained speedup of a heterogeneous system, 

, is defined as the ratio of the processing rate of the 

heterogeneous system, , to the processing rate of 

the fastest participant, . Barring the occurrence of 

super-linear phenomena [21], the maximum possible 

speedup that may be expected from the heterogeneous 

system, , is the ratio of the sum of the process-

ing rates of the individual participating machines, 

, to the processing rate of the fastest partici-

pant, . Finally, the efficiency of a heterogeneous 

system, , is intuitively defined as the ratio of the 

attained speedup to the maximum speedup. 

 

To measure the processing rates of the individual 

machines, we executed a single virtual thread sepa-
rately on each machine, without making use of the 

distributed processing infrastructure. This allowed us 

to obtain a close estimate of what would have been the 

performance of the sequential version of the algo-

rithm. Subsequently, we arranged our available ma-

chines into a number of heterogeneous setups and ran 

another series of tests, this time deploying the algo-

rithm on all available peers. Speedups and efficiencies 

were calculated using the formulae presented above.  

As one may observe from Figure 4, the system in-

curs substantial initialization costs; however, these 

gradually level out with larger problem sizes. For our 

largest problem size, efficiencies were 95.7%, 94.2%, 

and 93.0% for setups containing 2, 3, and 4 machines, 

respectively. This performance is considered quite 

acceptable for a communicative algorithm, where effi-

ciencies exceeding 90% may be classified as near-

linear [21]. The observation that efficiency diminishes 

with increasing levels of concurrency conforms to 

Amdahl’s Law [15]; in our case, the sequential part 

was the interbreeding, which was performed through a 
mandatorily-synchronized global variable. 

 

Figure 4. Speedups attained for different problem 
sizes, under three heterogeneous setups (plus 

the reference setup). The legend gives the num-
ber of peers in each setup. Maximum speedup is 
indicated through dashed lines within the graph, 

and in parentheses within the legend.  

6. Conclusions 

Distributed computing has yet to break into its syn-

ergy phase, possibly due to the socio-institutional iner-

tia which prohibits mainstream adoption of a new 

paradigm until it has reached a certain critical mass 

[22]. There have been various initiatives intended to 

encourage a wider adoption of distributed computing, 

ranging from humble prototypes, such as our own, to 

full-fledged Grid dissemination projects, such as 

EUMEDGRID. However, what the world appears to be 

waiting for is a killer application which would open up 
this unharnessed realm to the global community at 

large, just as the Mosaic browser had done for the 

Web, and Napster for P2P file-sharing. The procure-

ment of such an application would be a prodigious and 

gratifying feat which would propel a new era of inno-

vation.  

Cycle-harvesting through distributed systems has 

been advocated for several years. Back in 1995, 

Anderson et al. [8] had declared that networks of 

workstations (NOWs) would eventually become the 

primary computing infrastructure, amassing the ca-
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pacities of the workstations’ memory, storage, and 

processing units, to serve “all the needs of computer 

users” [emphasis in original]. Both Loo [5] and Da-

vies [7] postulate that the ultimate manifestation of 

this trend would be the emergence of a global platform 

which leverages the ubiquity of the Internet to aggre-

gate processing power from computers all over the 

world, joining the ranks of quintessential technologi-

cal phenomena. The pursuing spirit of utilitarianism 
would effectively establish – as eloquently dubbed by 

Erlanger [23] – “the poor man’s supercomputer”. 
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