

Parallel Processing over a Peer-to-Peer Network

Constructing the Poor Man’s Supercomputer

Karl Fenech

Department of Computer Science

Faculty of ICT

University of Malta
karl.fenech@gmail.com

Kevin Vella

Department of Computer Science

Faculty of ICT

University of Malta

kevin.vella@um.edu.mt

Abstract

The aggregation of typical home computers

through a peer-to-peer (P2P) framework over the

Internet would yield a virtual supercomputer of un-
matched processing power, 95% of which is presently

being left unutilized. However, the global community

appears to be still hesitant at tapping into the well of

unharnessed potential offered by exploiting distributed

computing. Reasons include the lack of personal in-

centive for participants, and the high degree of exper-

tise required from application developers.

Our vision is to tackle the aforementioned obsta-

cles by building a P2P system capable of deploying

user-defined tasks onto the network for distributed

execution. Users would only be expected to write

standard concurrent code accessing our application

programming interface, and may rely on the system to

transparently provide for optimal task distribution,

process migration, message delivery, global state,

fault tolerance, and recovery. Strong mobility during

process migration is achieved by pre-processing the

source code. Our results indicate that near-linear effi-
ciencies – approximately 94% ± 2% of the optimal –

may be obtained for adequately coarse-grained appli-

cations, even when deployed on a heterogeneous net-

work.

1. Introduction and Background

An enticing eventuality of any promising novelty is

its evolution from an esoteric research area to an un-

bounded opportunity for the masses. Quintessential

technological phenomena include the Internet enabling

global connectivity [1], the World Wide Web provid-

ing us with a virtually-unlimited repository of infor-

mation [2], and peer-to-peer (P2P) file-sharing appli-
cations facilitating the unhindered distribution of any

form of media [3]. One area which, however, appears

to be lagging behind is that of exploiting distributed

computing power [4].
This is somewhat disconcerting, since the aggrega-

tion of typical home computers through a P2P frame-

work over the Internet would yield a virtual super-

computer of unmatched processing power [5]. Fur-

thermore, most of this power is presently being left

unutilized; Schrage [6] and Davies [7] both report

95% CPU idle-time on typical powered workstations.

If the surplus processing power of a group of com-

puters could be pooled for consumption by users un-

dergoing peak utilization periods, one would boost

both throughput and efficiency, and mutual benefit

would be derived by all participating parties [8].

Reasons which could account for the global com-

munity’s hesitation at tapping into this well of unhar-

nessed potential are various. Lack of personal incen-

tive for participants could be an issue [5] – today’s

best-known distributed supercomputing applications,
such as SETI@home, primarily benefit the developing

entity rather than the participating home users. Many

developers perceive a problem of accessibility, in that

developing distributed applications often requires a

high degree of expertise [9], rendering it an area ex-

clusive to specialists. Furthermore, there is the inher-

ent issue of having to provide for fault tolerance. Due

to the dynamic nature of P2P networks, nodes may

join or leave the network in an ad hoc manner, making

it imperative for the application developer to imple-

ment redundancy and recovery measures [3] – a pre-

caution which would be unnecessary on stable archi-

tectures, such as Grids [10].

1.1. Assimilation of Technologies

There are several fields of research which could

give a positive contribution to the actualization of a

distributed computing system. An eclectic assimilation

of all such technologies would ensure a holistic treat-

ment of the problem.

mailto:karl.fenech@gmail.com
mailto:kevin.vella@um.edu.mt

The Grid is a platform which aggregates heteroge-

neous collections of resources into a coherent infra-

structure, affording users with reliable, cost-effective,

and ready access to their capabilities [4]. Grid compo-

nents are generally distributed (geographically dis-

persed), heterogeneous, and dynamic [11]. Nonethe-

less, such components may be accessed, individually

or collectively, through a uniform interface, thereby

abstracting away the infrastructural complexities to
provide a virtual platform for the application devel-

oper [12].

Peer-to-peer (P2P) systems involve the dynamic

establishment of decentralised network topologies by

the participating nodes. Whilst resource-sharing is

egalitarian in principle, node connectivity is generally

ad hoc; thus, the system must be inherently capable of

accommodating transient populations [13]. Loo [5]

argues that, with the pervasion of high-end personal

computers and high-bandwidth connections, the Inter-

net’s power is shifting back to its periphery; therefore,

P2P is the “next logical step” (succeeding the client–

server model) in the push towards maximising one’s

efficient usage of computational resources.

Autonomic computing entails the continuous ob-

servation and analysis of the (perceived) global state

by the individual participants, and the reactive enact-
ment of strategies by the said participants to address

the changing environment – all in an automated man-

ner. This allows the system to adapt rapidly to

changes, and to exhibit resilience to adversities such

as failing components, inaccurate resource advertise-

ments, or unforeseen circumstances [14].

Parallelism and concurrency serve as the theo-

retical background to distributed systems, setting out

the laws and promises that one may expect. Amdahl

[15] contends that the speedup attainable by distribut-

ing a parallelizable problem over multiple processors

would not be linear, but rather, an exponential ap-

proach towards a maximum value determined by the

sequential portion of the problem. However, Gustaf-

son [16] retorts that the relative size of the sequential

portion of a problem can be reduced by expanding the

parallelizable part – for example, by working at a
greater precision or resolution. Communication over-

heads are gradually becoming less prevalent due to the

fact that improvements in network performance are

outpacing those of computational resources [17].

Process migration is the act of moving a process

from one machine to another at runtime, preserving its

execution state [18]. Strong mobility implies that the

migration is transparent to the programmer. Low-level

approaches for achieving strong mobility involve ex-

tending the operating system or virtual machine; high-

level strategies entail altering some aspect of the com-

pilation model, such as the original source code.

2. Aim and Objectives

Our aim is to design and implement a parallel proc-

essing framework which distributes user-defined tasks

over a peer-to-peer network. Users would only be ex-

pected to write standard concurrent code accessing our

application programming interface (API), and may

rely on the system to transparently provide for optimal

task distribution and fault tolerance guarantees,

thereby addressing the issues discussed in the previous

section.

Figure 1. Our system (PPP2P) fits into the hour-
glass model, which is also used for Grids [17].
Connectivity is provided by the Windows Com-

munication Foundation (WCF).

2.1. Objectives

The aim is concretely realized through the follow-

ing objectives:

Concurrency: The system distributes each task’s

subtasks over several machines for simultaneous exe-

cution. Conversely, individual participant nodes are

capable of executing multiple subtasks (possibly from
different tasks) at the same time through multithread-

ing.

Decentralisation: The structure of centralized to-

pologies yields “inefficiencies, bottlenecks, and

wasted resources” [3]. A fully-decentralized system

divides the cost of ownership fairly amongst all par-

ticipants, and avoids any central points of failure.

Scalability: The system may accommodate any

number of participant nodes without experiencing any

significant performance degradation. The throughput

of the system (in terms of the number of tasks it can

complete in a given time interval) scales almost line-

arly with the number (and processing power) of par-

ticipating nodes available.

Efficiency: The system embodies a degree of intel-

ligence for distributing tasks in an optimal manner.

Each node maintains a partial or complete awareness
of the composition of the global mesh, and delegates

subtasks in a way that reduces their execution times

and promotes overall throughput.

Fabric

WCF

PPP2P

Application

Fault tolerance: Since a P2P system involves

nodes leaving the network in an unannounced and

nondeterministic manner, recovery mechanisms are

enacted for resuming subtasks which had been dele-

gated to the departed nodes. This is achieved through

a checkpointing strategy.

Ease-of-use: The API is aspired to be appealing,

user-friendly, and unobtrusive, to the extent that it

could be easily utilised without requiring technical
knowledge of the inner workings of the system.

2.2. Features

The following set of features (which is accessible

through our API) spans a wide range of programming

models, allowing the application developers to pick

the subset which best suits their needs or methodol-

ogy:

 The initialization and management of virtual
computers which enrol the requested number of

workers to participate in a particular task.

 The management and deployment of virtual

threads through virtual computers, with each vir-

tual thread encapsulating the execution of a spe-

cific subtask.

 The returning of results to the user application

once a virtual thread completes execution. (Note

that this feature, along with the previous two,

would suffice for a task-farming application.)

 The reporting of partial results to the user ap-

plication during the virtual thread’s execution,

using an event-driven approach.

 Direct communication between any pair of vir-

tual threads using buffered message passing.

 Mandatorily-synchronized access to global vari-

ables, whose values would be common to all vir-

tual threads within a virtual computer.

 Checkpointing of the execution state of each in-
dividual virtual thread (using process migration),

allowing it to be resumed on another peer if its

host should disconnect or die.

3. Design

Our design strategy is aligned with the recent wave

promoting the coalescence of Grid and P2P technolo-

gies [13], [19]. We provide a uniform interface for the

exploitation of heterogeneous resources by independ-

ently-developed user applications (as in Grids), but

support an egalitarian and ad hoc participation model

(as in P2P). The stability of the infrastructure would

be maintained dynamically using concepts borrowed

from autonomic computing.

Figure 2. The various usage scenarios under
which our system may be employed,

possibly simultaneously.

3.1. Duality

The system is designed to effectuate an interplay

between two distinct but closely-interdependent pro-

jects. The Peer Controller, on one hand, handles the

local peer’s participation in the P2P network. It as-

sumes responsibility for deploying tasks submitted by

local clients (user applications), as well as contribut-

ing to the execution of tasks from other nodes’ clients

(submitted through their respective Peer Controllers).

The Leverage library, on the other hand, integrates

with the user application, allowing it to utilize the

functionality of the Peer Controller and, subsequently,

the rest of the system.

This arrangement implies that the system may be

perceived through two different viewpoints: the struc-

tural architecture of the Peer Controller, and the virtu-

alisation platform given by the Leverage library. The

functionality of the latter is enabled through the invo-
cation of the former; however, it is exposed to the user

at a substantial level of virtualisation (abstraction),

since several mechanisms – such as task distribution,

migration, message delivery, global state, fault toler-

ance, and recovery – would be provided by the under-

lying system.

3.2. Fault Tolerance

The Pre-Processor is a passive component which

prepares an application for strong mobility. Intended

to be run before compiling the user application, it

converts the source code to a version which explicitly

maintains the execution state, but preserves the se-

mantics of the original code.

At periodic intervals, each virtual thread would

checkpoint itself by anticipatively migrating a copy of

⋮

M

May 08

T W T F S S

1 2 3 4

5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30 31

Distributed
Supercomputing

On-Demand Computing

Long-Running
Computations

High-
Throughput

Computing

its execution state to a remote node, where it is held in

dormancy. Should the node executing the virtual

thread undergo an unannounced departure, the virtual

thread would be resumed, from its last checkpointed

state, on another node. This is all performed transpar-

ently to the user application, which would not even be

aware of the node failure or migration.

4. Implementation

4.1. Peer Controller

Most of the mechanisms required for achieving the

specified feature set are incorporated into the Peer

Controller – the Leverage library only provides the

access to these mechanisms. The Peer Controller is

organized into an assemblage of functionally-cohesive

components, each being responsible for some specific

aspect of its activities or behaviours.

The root of the composition hierarchy is, expect-

edly, the peer controller component. The participa-

tion manager has a twofold responsibility: periodi-

cally announcing the peer’s participation in the global

mesh, and maintaining a (partial or complete) record

of the other participating peers.

The deployer initiates and manages a virtual com-

puter for a local leveraged client. The worker, on the

other hand, enrols in a virtual computer established by
a remote peer. It instantiates an executor for executing

each virtual thread delegated to it by the remote de-

ployer. Peer unit proxies are responsible for estab-

lishing any direct connections required between peer

units (namely, deployers and workers) for unicast

communication. They provide a layer of location

transparency for the virtual threads, allowing them to

intercommunicate without needing to know whether

the target virtual thread is being executed in the same

worker or in a remote one.

The assembly manager is responsible for retriev-

ing, caching, and loading assemblies. The address

resolver is consulted by the worker proxy during mes-

sage passing; it resolves the virtual thread ID of the

target virtual thread to the address of the (local or re-

mote) executor on which it is presently deployed. The

message manager handles the buffered transfer of
messages between virtual threads. The global vari-

able manager coordinates synchronized access to

global variables. The worker quota maintainer en-

sures that the quota for the requested number of work-

ers to enrol in the virtual computer is maintained

throughout its lifetime. The enrolment requestor

issues worker enrolment requests to available peers

concurrently in order to meet the quota for the re-

quested number of workers. Enrolment requestors are

invoked either upon virtual computer initialization, or

when the number of enrolled workers falls below the

quota (because of node failures). Finally, the virtual

thread delegator distributes virtual threads to the

enrolled workers for execution.

Figure 3. UML 2 class diagram for the
structural architecture of the Peer Controller.

4.2. Pre-Processor

The Pre-Processor prepares the source code for

strong mobility by subjecting it to a conversion se-

quence. It starts off by reading and parsing the source

code, creating an abstract syntax tree (AST). Next, it

passes the AST through a pipeline of visitors and
transformers.

Methods which may, directly or indirectly, invoke

a checkpoint are encapsulated within inner classes;

each inner class would represent the particular

method’s stack frame. The body of each checkpoin-

table method is converted into a series of logical

blocks, with each logical block being associated with a

particular value of an artificial program counter. Pa-

rameters and local variables within the checkpointable

methods are promoted to instance variables (fields)

1 *

1

*

Peer Controller Layer

Peer Unit Layer

Peer Unit Proxy Layer

1

Sub–Peer Unit Layer

1

1

1

Peer Controller

Executor

Assembly

Manager

Address
Resolver

Peer Unit

Deployer

Worker

1

1

1 Message

Manager
1

*

1

1

1

Global Variable

Manager

Worker Quota

Maintainer

Enrolment

Requestor

Virtual Thread
Delegator

1
Participation

Manager

1

Peer Unit

Proxy

Deployer

Proxy

Worker

Proxy

within the encapsulating inner class, allowing their

value to be serialized when a checkpoint is performed.

Finally, the contents of the converted AST are out-

put back to a source code string, which may then be

compiled into an ordinary .NET assembly.

5. Evaluation

To evaluate the capabilities of our system quantita-

tively, we developed a parallelizable version of a ge-
netic algorithm for the travelling salesman problem.

We devised a scheme whereby each virtual thread

would evolve its own population, yet interbreed its

best chromosomes with the other virtual threads at

regular intervals in order to promote convergence.

Each virtual thread was deployed onto a dedicated

peer to facilitate evaluation.

Prevailing trends in Grid and P2P systems embrace

participant heterogeneity congenitally [11], [13].

Therefore, we opted to run our tests on heterogeneous

setups, using the definitions for speedup presented by

Donaldson et al. [20], among others. The processing

rate of a problem on a machine or heterogeneous sys-

tem, or , is obtained by dividing the problem

size by its execution time on the said machine or sys-

tem. The attained speedup of a heterogeneous system,

, is defined as the ratio of the processing rate of the

heterogeneous system, , to the processing rate of

the fastest participant, . Barring the occurrence of

super-linear phenomena [21], the maximum possible

speedup that may be expected from the heterogeneous

system, , is the ratio of the sum of the process-

ing rates of the individual participating machines,

, to the processing rate of the fastest partici-

pant, . Finally, the efficiency of a heterogeneous

system, , is intuitively defined as the ratio of the

attained speedup to the maximum speedup.

To measure the processing rates of the individual

machines, we executed a single virtual thread sepa-
rately on each machine, without making use of the

distributed processing infrastructure. This allowed us

to obtain a close estimate of what would have been the

performance of the sequential version of the algo-

rithm. Subsequently, we arranged our available ma-

chines into a number of heterogeneous setups and ran

another series of tests, this time deploying the algo-

rithm on all available peers. Speedups and efficiencies

were calculated using the formulae presented above.

As one may observe from Figure 4, the system in-

curs substantial initialization costs; however, these

gradually level out with larger problem sizes. For our

largest problem size, efficiencies were 95.7%, 94.2%,

and 93.0% for setups containing 2, 3, and 4 machines,

respectively. This performance is considered quite

acceptable for a communicative algorithm, where effi-

ciencies exceeding 90% may be classified as near-

linear [21]. The observation that efficiency diminishes

with increasing levels of concurrency conforms to

Amdahl’s Law [15]; in our case, the sequential part

was the interbreeding, which was performed through a
mandatorily-synchronized global variable.

Figure 4. Speedups attained for different problem
sizes, under three heterogeneous setups (plus

the reference setup). The legend gives the num-
ber of peers in each setup. Maximum speedup is
indicated through dashed lines within the graph,

and in parentheses within the legend.

6. Conclusions

Distributed computing has yet to break into its syn-

ergy phase, possibly due to the socio-institutional iner-

tia which prohibits mainstream adoption of a new

paradigm until it has reached a certain critical mass

[22]. There have been various initiatives intended to

encourage a wider adoption of distributed computing,

ranging from humble prototypes, such as our own, to

full-fledged Grid dissemination projects, such as

EUMEDGRID. However, what the world appears to be

waiting for is a killer application which would open up
this unharnessed realm to the global community at

large, just as the Mosaic browser had done for the

Web, and Napster for P2P file-sharing. The procure-

ment of such an application would be a prodigious and

gratifying feat which would propel a new era of inno-

vation.

Cycle-harvesting through distributed systems has

been advocated for several years. Back in 1995,

Anderson et al. [8] had declared that networks of

workstations (NOWs) would eventually become the

primary computing infrastructure, amassing the ca-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 10 20 30 40 50 60 70 80 90
S

p
e

e
d

u
p

Problem size (generation batches)

4 (2.981) 3 (2.147)

2 (1.600) 1 (1.000)

pacities of the workstations’ memory, storage, and

processing units, to serve “all the needs of computer

users” [emphasis in original]. Both Loo [5] and Da-

vies [7] postulate that the ultimate manifestation of

this trend would be the emergence of a global platform

which leverages the ubiquity of the Internet to aggre-

gate processing power from computers all over the

world, joining the ranks of quintessential technologi-

cal phenomena. The pursuing spirit of utilitarianism
would effectively establish – as eloquently dubbed by

Erlanger [23] – “the poor man’s supercomputer”.

References

[1] L. Kleinrock, “An Internet vision: the invisible global

infrastructure,” Ad Hoc Networks, vol. 1, 2003, pp. 3–

11.

[2] S. Brin, “Extracting Patterns and Relations from the

World Wide Web,” WebDB ‘98: Selected papers from

the International Workshop on The World Wide Web
and Databases, London, 1999, pp. 172–183.

[3] D.S. Milojičić, et al., “Peer-to-Peer Computing,”
Technical Report HPL-2002-57R1, HP Laboratories,

Palo Alto, California, 2002.

[4] I. Foster and C. Kesselman, “Computational Grids,”

The Grid: Blueprint for a New Computing Infrastruc-

ture, I. Foster and C. Kesselman, eds., Morgan Kauf-

mann Publishers, San Francisco, 1998, ch. 2, pp. 15–
52.

[5] A.W. Loo, “The Future of Peer-to-Peer Computing,”
Communications of the ACM, vol. 46, no. 9, Sep.

2003, pp. 56–61.

[6] M. Schrage, “Piranha processing – utilizing your

down time,” HPCwire (Electronic Newsletter), Aug.

1992.

[7] A. Davies, “Computational intermediation and the

evolution of computation as a commodity,” Applied

Economics, vol. 36, no. 11, June 2004, pp. 1131–

1142.

[8] T.E. Anderson, D.E. Culler, and D.A. Patterson, “A

Case for NOW (Networks of Workstations),” IEEE
Micro, vol. 15, no. 1, Feb. 1995, pp. 54–64.

[9] J. Waldo, G. Wyant, A. Wollrath, and S.C. Kendall,
“A Note on Distributed Computing,” Selected Presen-

tations and Invited Papers, Second International

Workshop on Mobile Object Systems (MOS ‘96) –

Towards the Programmable Internet, London, 1996,
pp. 49–64.

[10] D. De Roure, M.A. Baker, N.R. Jennings, and N.R.
Shadbolt, “The evolution of the Grid,” Grid Comput-

ing: Making the Global Infrastructure a Reality, F.

Berman, G. Fox, and A.J.G. Hey, eds., John Wiley &

Sons, Chichester, 2003, ch. 3, pp. 65–100.

[11] F. Berman, G. Fox, and A.J.G. Hey, “The Grid: Past,

Present, Future,” Grid Computing: Making the Global
Infrastructure a Reality, F. Berman, G. Fox, and

A.J.G. Hey, eds., John Wiley & Sons, Chichester,

2003, ch. 1, pp. 9–50.

[12] H. Stockinger, “Defining the grid: a snapshot on the

current view,” The Journal of Supercomputing, vol.
42, no. 1, Oct. 2007, pp. 3–17.

[13] S. Androutsellis-Theotokis and D. Spinellis, “A Sur-

vey of Peer-to-Peer Content Distribution Technolo-
gies,” ACM Computing Surveys, vol. 36, no. 4, Dec.

2004, pp. 335–371.

[14] P. Pattnaik, K. Ekanadham, and J. Jann, “Autonomic

Computing and Grid,” Grid Computing: Making the

Global Infrastructure a Reality, F. Berman, G. Fox,

and A.J.G. Hey, eds., John Wiley & Sons, Chichester,
2003, ch. 13, pp. 351–361.

[15] G.M. Amdahl, “Validity of the Single Processor Ap-
proach to Achieving Large-Scale Computing Capa-

bilities,” AFIPS Conference Proceedings, AFIPS

Press, vol. 30, Apr. 1967, pp. 483–485.

[16] J.L. Gustafson, “Reevaluating Amdahl’s Law,” Com-

munications of the ACM, vol. 31, no. 5, May 1988, pp.

532–533.

[17] I. Foster, “The Grid: A New Infrastructure for 21st

Century Science,” Grid Computing: Making the
Global Infrastructure a Reality, F. Berman, G. Fox,

and A.J.G. Hey, eds., John Wiley & Sons, Chichester,

2003, ch. 2, pp. 51–63.

[18] D.S. Milojičić, F. Douglis, Y. Paindaveine, R.

Wheeler, and S. Zhou, “Process Migration,” ACM

Computing Surveys, vol. 32, no. 3, Sep. 2000, pp.

241–299.

[19] I. Foster and A. Iamnitchi, “On Death, Taxes, and the

Convergence of Peer-to-Peer and Grid Computing,”
Proceedings of the Second International Workshop on

Peer-to-Peer Systems (IPTPS ‘03), Berkeley, 2003,

pp. 118–128.

[20] V. Donaldson, F. Berman, and R. Paturi, “Program

Speedup in a Heterogeneous Computing Network,”

Journal of Parallel and Distributed Computing, vol.
21, no. 3, June 1994, pp. 316–322.

[21] E. Alba, A.J. Nebro, and J.M. Troya, “Heterogeneous
Computing and Parallel Genetic Algorithms,” Journal

of Parallel and Distributed Computing, vol. 62, no. 9,

2002, pp. 1362–1385.

[22] C. Perez, “Technological Revolutions, Paradigm

Shifts and Socio-Institutional Change,” Globalization,

Economic Development and Inequality: An Alterna-
tive Perspective, E. Reinert, ed., Edward Elgar, Chel-

tenham, 2004, pp. 217–242.

[23] L. Erlanger, “Distributed Computing: An Introduc-

tion”, Apr. 2002; http://www.extremetech.com/

article2/0,1697,1154105,00.asp.

http://www.extremetech.com/article2/0,1697,1154105,00.asp
http://www.extremetech.com/article2/0,1697,1154105,00.asp

