

Scheduling Task-Parallel

Programs in a Multiprogram

Workload

Karl Fenech

 Supervisors: Murray Cole

 Christian Fensch

MSc Computer Science

School of Informatics

University of Edinburgh

2013

i

Abstract

With commodity multicore architectures already prevalent, the microprocessor industry is

poised to leap into the manycore era within the next few years. To avail of such machines’

multiprocessing capabilities, software developers are increasingly incentivized to parallelize

their programs. This trend poses new challenges for the system scheduler, which will now

need to consider the parallel characteristics of the respective programs when seeking to

maximize the system-level performance of its multiprogram workloads.

In this project, we reconcile two orthogonal approaches: work-stealing task-scheduling for

efficiently unravelling structured parallelism from each program, and scalability-based

processor-partitioning for dynamically optimizing the programs’ core allocations within the

context of the current multiprogram workload on the manycore machine. We

experimentally demonstrate that, for low- to moderate-scalability programs, our

multiprogram scheduler can succeed in achieving modest improvements over mainstream

thread and task schedulers.

Keywords: parallel programming; structured parallelism; algorithmic skeletons;

divide-and-conquer; manycore multiprocessing; multiprogram workloads;

processor partitioning; scheduling; scalability; dynamic optimization

ii

Acknowledgements

My heartfelt gratitude goes to my supervisors, Dr Murray Cole and Dr Christian Fensch, who

have been a steady source of insight, guidance, and support throughout the entirety of this

project, from the inception of the idea, right up to their detailed feedback on the final

drafts of this document. It is an enriching privilege to get the opportunity to work under the

supervision of such accomplished individuals who still exhibit enthusiastic interest in your

progress. This experience has been both exciting and educational, imparting me with a

profound appreciation and knowledgeability of this area of research.

I would like to thank the EPCC, especially Dr Mark Bull and Dr David Henty, who kindly

accepted to grant me free access to the Morar manycore server, on which all our

experiments (collectively spanning hundreds of compute hours) were run.

My thanks also go to my lecturers and tutors from the University of Edinburgh for delivering

this quality degree, as well as the Informatics Teaching Organisation (ITO) staff for their

helpfulness. On a retrospective note, I remain grateful towards my past teachers and

mentors, both from academia and from industry, who reinforced my passion for the subject

over the years. In particular, I would like to thank Prof Gordon Pace for encouraging me to

pursue postgraduate studies.

Special thanks go to my family and close friends for their unwavering support and

encouragement throughout all the years. Finally, I salute Gavi, ’Tasha, and 3PT, for their

role in reifying the trans-spectral.

http://homepages.inf.ed.ac.uk/mic/
http://homepages.inf.ed.ac.uk/cfensch/
http://www.epcc.ed.ac.uk/
http://www.epcc.ed.ac.uk/facilities/other-facilities/morar
http://www.ed.ac.uk/
http://www.inf.ed.ac.uk/student-services/teaching-organisation
http://www.um.edu.mt/ict/cs/staff/Prof.GordonPace

iii

“The biggest sea change in software development since the OO revolution is

knocking at the door, and its name is Concurrency.” — Herb Sutter

iv

The research work disclosed in this publication is partially funded by the

Strategic Educational Pathways Scholarship Scheme (Malta).

The scholarship is part-financed by the European Union – European Social Fund.

Operational Programme II – Cohesion Policy 2007–2013

Empowering People for More Jobs and a Better Quality of Life

Scholarship part-financed by the European Union

European Social Fund (ESF)

Co-financing rate: 85% EU Funds; 15% National Funds

Investing in your future

v

Table of Contents

Chapter 1: Introduction ... 1

1.1 Aim ... 1

1.2 Hypothesis .. 2

1.3 Contributions ... 3

1.4 Common Symbols .. 4

1.5 Document Structure... 5

1.5.1 Submission Details ... 6

Chapter 2: Background .. 7

2.1 The Concurrency Revolution .. 7

2.2 Parallel Abstractions .. 9

2.2.1 Threaded Programming ... 10

2.2.2 Task Parallelism .. 11

2.2.3 Structured Parallelism .. 12

2.2.4 Divide-and-Conquer Skeleton .. 13

2.3 Thread Scheduling .. 15

2.3.1 Processor Partitioning .. 15

2.3.2 Program Scalability .. 17

2.4 Performance Metrics ... 17

2.4.1 Turnaround Time ... 18

2.4.2 Throughput .. 19

2.4.3 Variability ... 19

2.5 Parallel Programming in .NET Framework ... 20

Chapter 3: Related Work ... 21

3.1 Task Schedulers .. 21

3.1.1 Skandium .. 21

3.1.2 Task Parallel Library ... 22

3.1.3 Work-Stealing Task Scheduler ... 24

3.2 Partitioning Schedulers .. 28

Chapter 4: Skeleton Designs.. 29

4.1 Divide-and-Conquer Skeleton .. 29

4.1.1 Functional Parameterization .. 29

4.1.2 Execution Interface .. 30

4.1.3 Scheduling Extensibility.. 31

4.1.4 Declarative Model .. 31

4.1.5 Object-Oriented Model .. 32

4.2 Task Generation ... 33

4.2.1 Fork–Join Pattern ... 33

4.2.2 Asynchronous Execution .. 35

vi

4.3 Program Hierarchy ... 39

4.4 Sample Programs ... 41

4.4.1 Sum of Squares .. 42

4.4.2 Monte Carlo Pi ... 43

4.4.3 Strassen Matrix Multiplication ... 45

4.4.4 Quicksort .. 46

4.4.5 Mergesort .. 48

4.5 Common Design Considerations .. 49

4.5.1 Program Reinitialization ... 49

4.5.2 Granularity ... 50

4.5.3 Nested Parallelism ... 53

Chapter 5: Scheduler Designs.. 54

5.1 Scheduler Hierarchy ... 55

5.1.1 Free Task Scheduler ... 56

5.1.2 Affinity Task Scheduler ... 56

5.1.3 Contiguous vs. Dispersed Allocation .. 57

5.2 Multiprogramming Schemes .. 58

5.2.1 Oversubscribed Free Multiprogramming ... 59

5.2.2 Oversubscribed Pinned Multiprogramming... 61

5.2.3 Shared-Scheduler Multiprogramming ... 62

5.2.4 Default-Scheduler Multiprogramming ... 63

5.3 Multiprogramming Task Schedulers .. 64

5.3.1 Scheduler Partitioning .. 64

5.3.2 Scalability-Based Partitioning... 66

5.3.3 Dynamic Repartitioning ... 68

5.3.4 Task-Availability-Based Repartitioning .. 72

5.4 Multiprogramming Test Strategies .. 76

5.4.1 Cyclic Tests ... 76

Chapter 6: Experimental Setup ... 78

6.1 Hardware Platform .. 78

6.2 Software Platform .. 79

6.3 Statistical Methods .. 79

Chapter 7: Experimental Results and Analysis .. 81

7.1 Granularity ... 81

7.2 Scalability ... 84

7.2.1 Contiguous vs. Dispersed Allocation .. 86

7.3 D&C Phases .. 88

7.4 Symmetric Tests ... 90

7.5 Cyclic Tests ... 92

7.5.1 Full Program Suite .. 92

7.5.2 Low- to Moderate-Scalability Subset ... 96

7.5.3 Comparison with Related Work ... 99

vii

Chapter 8: Conclusion ... 102

8.1 Achievements ... 102

8.2 Potential Improvements and Future Work .. 103

8.3 Closing Remarks ... 105

Bibliography ... 106

viii

Tables of Figures

Figure 1.1. Concurrent execution of two divide-and-conquer programs 2

Figure 1.2. Common symbols .. 4

Figure 2.1. Intel microprocessor trends .. 8

Figure 2.2. Multithreading on multiprocessors ... 10

Figure 2.3. Stack of parallelism abstractions ... 12

Figure 2.4. Activity flow for the D&C skeleton .. 14

Figure 2.5. Processor partitioning by program .. 16

Figure 2.6. Processor partitioning by program scalability ... 17

Figure 3.1. Task scheduling in Skandium ... 22

Figure 3.2. Global queue and per-thread local queues in TPL ... 23

Figure 3.3. Class diagram showing the composition of the task schedulers 25

Figure 3.4. Structure of the work-stealing task scheduler .. 26

Figure 3.5. Task production in the work-stealing task scheduler .. 27

Figure 3.6. Task consumption in the work-stealing task scheduler 27

Figure 4.1. D&C skeleton class basics .. 29

Figure 4.2. Three-level divide-and-conquer execution flow ... 30

Figure 4.3. Simple parallel quicksort, expressed declaratively .. 32

Figure 4.4. Parallel quicksort using fork–join pattern ... 33

Figure 4.5. Task execution in D&C skeleton using fork–join parallelism 34

Figure 4.6. Blocking vs. asynchronous execution of D&C recursion 36

Figure 4.7. Task execution in D&C skeleton using asynchronous parallelism 37

Figure 4.8. Unravelling nested asynchronicity at each recursive step 38

Figure 4.9. Class hierarchy for the D&C skeleton and programs ... 39

Figure 4.10. Map–reduce methods for functional parameterization.................................... 40

Figure 4.11. Colour convention for the D&C diagrams ... 41

Figure 4.12. Sample D&C execution of sum-of-squares .. 42

Figure 4.13. Sample D&C execution of Monte Carlo Pi ... 44

Figure 4.14. Sample D&C execution of Strassen matrix multiplication 46

Figure 4.15. Sample D&C execution of quicksort .. 47

Figure 4.16. Sample D&C execution of mergesort .. 48

Figure 4.17. Main components of the GranularDivCon class ... 50

Figure 4.18. Delimiting the split phase .. 52

Figure 5.1. Class diagram showing the composition of our task schedulers 55

Figure 5.2. Structure of the affinity task scheduler ... 57

Figure 5.3. Contiguous vs. dispersed allocation of 8 pinned threads.................................... 58

Figure 5.4. Oversubscription by multithreaded applications .. 59

Figure 5.5. Oversubscription by task-parallel programs .. 60

Figure 5.6. Oversubscribed free multiprogramming ... 60

Figure 5.7. Oversubscribed pinned multiprogramming .. 61

ix

Figure 5.8. Programs feeding a shared task scheduler .. 62

Figure 5.9. Shared-scheduler multiprogramming scheme .. 63

Figure 5.10. Reconciliation of task parallelism with processor partitioning 64

Figure 5.11. Processors partitioned among task schedulers ... 65

Figure 5.12. Task schedulers can enact processor partitioning ... 66

Figure 5.13. Statically-partitioned multiprogramming .. 67

Figure 5.14. Thread-based processor reallocation .. 69

Figure 5.15. Decoupling of thread pool from task queue superstructure 70

Figure 5.16. Constitution of the multiprogram scheduler ... 70

Figure 5.17. Transitioning a worker thread across task schedulers 71

Figure 5.18. D&C execution under static partitioning ... 73

Figure 5.19. D&C execution under task-availability-based repartitioning 73

Figure 5.20. Heuristic for reallocating processors among programs..................................... 74

Figure 5.21. Cyclic test harness ... 76

Figure 6.1. Processor setup in the manycore servers .. 78

Figure 7.1. Execution time vs. granularity ... 82

Figure 7.2. Execution time vs. granularity, showing region of best performances 83

Figure 7.3. Speedup vs. concurrency ... 85

Figure 7.4. Speedup vs. concurrency for contiguous vs. dispersed allocation 87

Figure 7.5. Cumulative execution times of tasks in each D&C phase 89

Figure 7.6. MNTT for symmetric tests involving 8 instances of the same program 90

Figure 7.7. MNTT for symmetric tests of low-scalability programs 92

Figure 7.8. NTTs of our 5-program workload .. 93

Figure 7.9. NPs of our 5-program workload .. 93

Figure 7.10. ANTT of our 5-program workload ... 95

Figure 7.11. STP of our 5-program workload .. 95

Figure 7.12. NTTs of our 3-program workload .. 97

Figure 7.13. NPs of our 3-program workload .. 97

Figure 7.14. ANTT of our 3-program workload ... 98

Figure 7.15. STP of our 3-program workload .. 98

Figure 7.16. Scalabilities of PARSEC benchmarks .. 100

Figure 8.1. Nested parallelism attained by embedding sub-skeletons 104

1

Chapter 1: Introduction

Parallel programming has been receiving a lot of attention since the microprocessor

industry’s shift to multiprocessing at the turn of the century, following the cessation of the

“free lunch” of exponential performance improvements for sequential applications after

hitting physical limits such as the power wall [1]–[3]. The de facto technique for harnessing

parallelism has traditionally been threaded programming, despite its various

shortcomings [4], [5]. Recent attention has been shifting towards higher-level parallel

programming frameworks, principally building on the notion of tasks, with popular products

including Intel TBB (2006) [6], OpenMP (2008) [7],1 and Microsoft TPL (2010) [8].

The microprocessor industry is now on the verge of leaping from the multicore to the

manycore era [3], [9], spurring initiatives such as the Intel Many Integrated Core (MIC)

architecture [10] and Single-Chip Cloud Computer (SCC) project [11]. Consequently,

multiprogram workload scheduling is re-emerging as another important topic of research.

As the number of processors in commodity machines rises drastically, it will become

increasingly commonplace to have multiple programs – each internally parallel – executing

concurrently on the same machine. This is a consequence both of need and of supply:

A typical user workstation needs to have many applications active concurrently, yet most of

these would not individually have the algorithmic scalability to exploit the full concurrency

of a manycore machine. Strategies for dynamically distributing the active workload in a

manner that best exploits the machine’s multiprocessing capabilities will become essential

to achieve high performance [12]–[15].

1.1 Aim

The principal aim of this project is to devise and investigate scheduling strategies for

optimizing the performance of task-parallel programs embodying divide-and-conquer

algorithms, particularly when executing concurrently as a multiprogram workload on a

manycore machine.

1
 Although OpenMP was first released in 1997, the concept of tasks was only introduced in

OpenMP 3.0, released in 2008.

http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-computer.html

2

1.2 Hypothesis

The divide-and-conquer algorithmic pattern inherently captures information about the

computational characteristics of its implemented applications. Due to its well-defined

formulation as a recursion, it follows a structured execution whose constitution may be

accessed and controlled by the underlying scheduler.

Figure 1.1. Concurrent execution of two divide-and-conquer programs, providing a preview of the

nature of our scheduling strategies. Note that fs represents a split operation; fe, an execute (being

the base case of the recursion); and fm, a merge. The programs may be scheduled as:

spread across all processors (left); allocated to dedicated subsets of the processors (centre);

and having their granularities adjusted dynamically for their current allocations (right).

A pattern-aware scheduler may exploit this structural rigour to optimize applications’

amenability to parallelism (as hinted in Figure 1.1). By inferring knowledge about each

application’s scalability and data locality, the scheduler can guide their decomposition into

parallel subtasks and improve the subtasks’ distribution across the system’s

multiprocessors, boosting their concurrent execution within the context of the

multiprogram workload.

P1 P2 P3 P4 P1

fs

P2 P3 P4

fs

fs

fs fs fs

fm fm fm fm

fm fm

fe fe fe fe

fe fe fe fe

fs

fs

fs

fs fs fs

fm fm fm fm

fm fm

fe fe fe fe

fe fe fe fe

P1

fs

P2 P3 P4

fs

fm fm

fe fe fe fe

sp
lit p

h
ase

m
erge p

h
ase

execu
te p

h
ase

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

tim
e

3

Our hypothesis is that such schedulers can achieve better system-level performances than

traditional ones (including the default thread schedulers present in mainstream operating

systems), especially for multiprogram workloads having variable scalabilities.

1.3 Contributions

The main research contributions of our project are as follows:

 We create a fresh implementation of the divide-and-conquer algorithmic skeleton

for the .NET Framework, demonstrating the power of parallelism abstractions by

layering our skeleton atop the task infrastructure provided by the Task Parallel

Library (TPL) in .NET.

 We develop a novel extension to the work-stealing task-scheduling algorithm for

handling multiprogram workloads. Our multiprogram scheduler employs a common

pool of pinned worker threads that service a collection of program-specific task

queue superstructures. This scheduler will serve as the mechanism through which

we perform processor partitioning.

 We adapt the work of Sasaki et al. [13] and use program scalability as the base

policy for driving our processor partitioning decisions. On top of this, we enact a

dynamic reallocation strategy that regularly polls the number of available tasks in

each program and adjusts processor allocations accordingly, with the goal of

promoting full utilization of the machine’s processors.

 Through our multiprogram scheduler, we investigate the potential for synergy

between work-stealing task-scheduling and scalability-aware processor-

partitioning, and report on the performance obtained for a sample multiprogram

workload. Our experiments show that our scheduler can outperform the Linux

thread scheduler by 2% for low- to moderate-scalability workloads.

4

1.4 Common Symbols

Figure 1.2 presents the common set of symbols that will be used in the diagrams we

provide to complement our discussions throughout this dissertation.

2 processor
3

 multicore or manycore processor

 thread

4 thread pinning

5 program instance

6 sequential code snippet

 task queue

Figure 1.2. Common symbols used throughout this document

Our diagrams also make extensive use of colour coding, whose significance can typically be

inferred from context. In most cases, colours are used to differentiate either among

programs (like in Figure 1.1) or among execution phases (like throughout Section 4.4, p. 41).

2
 Source: CPU Icon by Chris Banks

3
 A “processor” should always be assumed to correspond to a single logical core, rather than an

entire multicore or manycore chip, unless using the other symbol below. A logical core

constitutes the smallest hardware component in a central processing unit (CPU) that can support

thread-level parallelism.

4
 Source: Pin Icon by Anna Shlyapnikova

5
 Source: App X Executable Icon by Untergunter

6
 Source: Source Code Icon by Fatcow Web Hosting

http://www.iconarchive.com/show/cold-fusion-hd-icons-by-chrisbanks2/cpu-icon.html
http://www.iconarchive.com/artist/chrisbanks2.html
http://www.iconarchive.com/show/toolbar-2-icons-by-shlyapnikova/pin-icon.html
http://www.iconarchive.com/artist/shlyapnikova.html
http://www.iconarchive.com/show/leaf-mimes-icons-by-untergunter/app-x-executable-icon.html
http://www.iconarchive.com/artist/untergunter.html
http://www.iconarchive.com/show/farm-fresh-icons-by-fatcow/source-code-icon.html
http://www.iconarchive.com/artist/fatcow.html

5

1.5 Document Structure

This dissertation has been intentionally structured to interleave two orthogonal streams:

the parallelism abstraction offered by tasks and algorithmic skeletons; and the processor

partitioning of multiprogram workloads. The reconciliation of these two aspects is one of

our central contributions (and will be finally brought to fruition in Section 5.3, p. 64).

Chapter 1 introduced our project by setting out the context that motivated our

investigation. It subsequently established our aim and the hypothesis that we shall be

evaluating, followed by an overview of the main contributions of our system.

Chapter 2 visits the background pertinent to our research, including: the recent

proliferation of multiprocessing; the various parallelism abstractions available to

application developers as a front-end for harnessing it; the thread-scheduling algorithms

that traditionally served as the low-level back-end; and performance metrics suitable for

parallel systems. Chapter 3 explores some published work that is related to – and serves as

the foundation for – our research. Given that our focus is on task parallelism, we analyse

the designs of the task schedulers underlying Skandium and TPL. We then examine a

recently-published processor-partitioning scheduler, giving a taste of this alternate

direction of parallel optimization.

Chapter 4 presents the design of our divide-and-conquer skeleton and the parallel

programs that we build upon it, offering insights into their dynamic behaviour. Chapter 5

delves into our scheduler designs, first explaining how we enact processor affinity, then

defining some multiprogramming schemes for executing task-parallel programs

concurrently. Subsequently, it presents our novel multiprogram scheduler, which synergizes

the relationship between task scheduling and processor partitioning.

Chapter 6 briefly describes our experimental setup, outlining our hardware platform,

software platform, and the statistical methods we employ. Chapter 7 is dedicated to our

experimental results and analysis, covering aspects such as task granularity, hardware

concurrency, program scalability, and multiprogramming schemes. We compare our results

to related work and justify any differences.

6

Finally, Chapter 8 serves as the conclusion which closes up our discussion, summarizing our

achievements and potential improvements. It is followed by the Bibliography, which lists all

the publications cited throughout this dissertation.

1.5.1 Submission Details

The original proposal for this project was nominated by Murray Cole as “Scheduling

Multithreaded Java Programs in a Multiprogram Workload”. Some content in this

dissertation has been adapted from our own Informatics Research Review (IRR) and

Informatics Research Proposal (IRP) submissions, albeit largely re-narrated or significantly

expanded.

This dissertation is complemented by a Visual Studio solution comprising all our source

code, including the D&C skeleton, sample programs, schedulers, optimizers,

multiprogramming schemes, and test harnesses. We also provide the raw data gathered

from our final experiments, as well as a spreadsheet containing the aggregated results in

tabular format, alongside the associated charts used in this document.

The submitted paper copies of this dissertation were accompanied by a signed

“project copyright permission letter” and “own work declaration” form.

For updates and corrections to this document effected after submission, one may refer to

our DivCon webpage,7 or contact us by email on karl.fenech@gmail.com. The current

version of this document corresponds to revision 65.

7
 URL: http://dogmamix.com/DivCon/

https://projects.inf.ed.ac.uk/msc/2012/project?number=P124
https://projects.inf.ed.ac.uk/msc/2012/project?number=P124
http://www.inf.ed.ac.uk/teaching/courses/irr/
http://www.inf.ed.ac.uk/teaching/courses/irp/
http://dogmamix.com/DivCon
mailto:karl.fenech@gmail.com
http://dogmamix.com/DivCon/

7

Chapter 2: Background

Our background spans a number of interrelated areas. We first discuss how the

proliferation of multiprocessing is driving application developers to embrace parallel

programming. This leads us to explore the levels of abstraction at which such parallelism

may be expressed, culminating with structured parallel programming through algorithmic

skeletons. This corresponds to the front end of our research, since it represents the

interface exposed to the application developers. Next, we study the function of thread

scheduling, which constitutes the back end of our investigation, since it provides the

rudimentary mechanism through which parallelism is actualized. Finally, we present some

performance metrics for evaluating parallel systems, and justify our choice of the .NET

Framework as our development platform.

2.1 The Concurrency Revolution

For several decades, software developers have readily benefitted from the effect of

Moore’s Law [16] on microprocessor architectures. Exponential improvements in transistor

densities regularly gave rise to increased clock speeds, instruction-level parallelism (ILP),

and on-chip cache capacities [1], [17]. These hardware improvements translated into

inherent performance gains for applications, including sequential ones, without requiring

any alteration to their software implementations [2]–[4], [18].

However, the convenient trend of ever-increasing clock frequencies eventually ran into

physical limits imposed by the “power wall”, encountering issues with power consumption,

heat dissipation, and current leakage [1], [2], [17], [19] (see Figure 2.1 below). Similarly, ILP

advances have been exhibiting diminishing returns, requiring complex architectural

improvements for merely incremental performance gains [20], [21].

At the turn of the century, mainstream microprocessor manufacturers switched to thread-

level parallelism (TLP) as the primary means of sustaining performance improvements [1],

[3]. In the field of central processing units (CPUs), two hardware technologies

flourished [12], [22]: simultaneous multithreading (SMT), which permits multiple threads to

be executed simultaneously on a superscalar architecture by replicating the registers and

program counters [23]; and chip multiprocessing (CMP), which integrates multiple cores,

8

each capable of independent execution, onto the same chip [17], [20]. Today, CMP

(popularly known as “multicore”) has become ubiquitous [3], with client architectures

supporting hundreds of cores [15] expected by 2020 [3].

Figure 2.1. Intel microprocessor trends, showing that increasing transistor densities

have ceased giving higher clock speeds since 2005. Copied from Sutter [1].

As a consequence of the proliferation of thread-level parallelism in modern

microprocessors, applications seeking to fully exploit their capabilities will need to be

concurrent [1], [2]. Notwithstanding hopes for a “quantum leap” in compilers’ abilities at

automatic parallelization [24], such technology has not yet made its way into mainstream

software development [2], [4], [5]. Thus, it is becoming increasingly important for software

developers to take the initiative in parallelizing their applications [3], [4], [25].

“Concurrency is the next major revolution in how we write software.”

 — Sutter [1]

9

Despite the hardware imperative, parallel programming has experienced disappointingly

slow uptake in mainstream application development [3], [4]. The major obstacle hindering

its adoption is the conceptual difficulty that most developers experience when reasoning

about concurrency [1]–[3], [5], [26], often finding themselves “quickly overwhelmed” [4].

The situation is exacerbated by the inadequacy of most current languages and tools at

expressing and harnessing parallelism [2]–[4]. In the next section, we shall explore how

parallel abstractions influence this issue.

“[We need] higher-level abstractions that help build concurrent programs, just

as object-oriented abstractions help build large componentized programs.”

 — Sutter & Larus [4]

2.2 Parallel Abstractions

Cole [27] highlights two main aspects to parallelization: problem decomposition, being the

identification of the potential parallelism in the expressed algorithm; and distribution,

through which parallel candidates are mapped onto the available processors for concurrent

execution. This distinction often manifests as an important abstraction presented by the

software framework to the application developer, wherein the developer is expected to

specify the parallel constructs (in some form), but then relegates the responsibility of their

instantiation and concurrent execution to the runtime environment.

The degree of abstraction has strong implications on the roles played respectively by the

developer and the runtime in harnessing parallelism, with lower-level frameworks affording

more flexibility but less insulation from performance-critical factors, such as

communication, synchronization, granularity, and load-balancing, as well as greater

exposure to parallelism’s hazards, including nondeterminism, races, deadlock, livelock, and

starvation [2]–[4].

“The aggressive goal of the parallel revolution is to make it as easy to write

programs that are as efficient, portable, and correct (and that scale as the

number of cores per microprocessor increases biennially) as it has been to write

programs for sequential computers.” — Asanovic et al. [2]

10

2.2.1 Threaded Programming

A thread is an execution primitive, spawned by a process, that may be independently

managed by the operating system [28].8 Threaded programming, as exposed through

implementations such as POSIX threads (pthreads) and Windows threads, is today’s

dominant paradigm for parallel programming [4], [5]. Multithreaded programs may harness

the concurrency of multiprocessing systems by having their threads execute on distinct

processors, with oversubscription handled transparently by the thread scheduler using pre-

emptive time-slicing [28]. (Thread scheduling will be discussed in Section 2.3, p. 15.)

Figure 2.2. Multithreading on multiprocessors. Traditionally, most research has focussed either on

individual multithreaded programs (left), or on workloads of multiple sequential programs (centre).

However, multithreaded multiprogramming (right) is now receiving substantial attention.

The main appeal of the threaded programming paradigm is its shared memory abstraction,

whereby all threads of the same process may be assumed to access a single logical address

space, irrespective of which processor they are being executed upon. This makes threading

appear like a “seemingly straightforward adaptation” of sequential programming, which

could explain its present-day popularity [5]. The costs incurred from intercommunicating

via main memory are mitigated through the presence of multiple levels of caches, which

maintain consistency using cache coherence protocols [29].

Whilst suitable for embarrassingly parallel algorithms, threads impart too much

responsibility on the application developer, who has to carefully synchronize their

execution wherever they interact, including for shared-memory access [5]. The arbitrary

8
 We shall be restricting our discussion to kernel-level threading. User threads, wherever

mentioned or implied, should be assumed to follow a one-to-one mapping onto kernel threads,

as is specifically the case for threads in the .NET Framework under its current implementation.

11

interleaving of threads across distinct code entities can cause leaky abstractions, resulting

in spaghetti code that widens “the conceptual gap between the static program and the

dynamic process” (analogous to the adverse effects of goto statements before the advent

of structured programming) [30], [31].

“Threads, as a model of computation, are wildly nondeterministic, and the job

of the programmer becomes one of pruning that nondeterminism. […] Rather

than pruning nondeterminism, we should build from essentially deterministic,

composable components. Nondeterminism should be explicitly and judiciously

introduced where needed, rather than removed where not needed.” — Lee [5]

Furthermore, threads are expensive to maintain. Their creation and destruction require

costly system calls; similarly, context-switching between threads incurs overheads [32].

In order to prevent these issues from degenerating into a performance bottleneck, it

becomes necessary to treat threads as long-lived entities, ideally reusable across multiple

operations [33], which may possibly be fed from a higher level of abstraction.

2.2.2 Task Parallelism

Most modern programming frameworks introduce the notion of a thread pool, whereby

the execution runtime assumes responsibility for maintaining a persistent set of reusable

threads [33]. This way, application developers are insulated from explicit thread lifecycle

management, and may instead focus on expressing potential parallelism through a series of

tasks, to be picked up and executed by the thread pool [8]. Tasks, which represent a “finite

CPU-bound computation”, are typically implemented as user-space constructs, making

them significantly more lightweight than threads, thereby allowing for parallelism to be

captured at finer granularities [8]. Runnable tasks are scheduled for execution through a

task queue, which is typically serviced by a thread pool [8], [25], [34]. (See Section 3.1,

p. 21, for a discussion of task scheduler implementations.)

Campbell et al. [34] describe some high-level patterns for tasks. For scenarios involving

static parallelism, tasks may be programmed using the traditional fork–join pattern, where

one spawns a number of tasks and waits for them to collectively complete. Algorithms

based on data-flow constraints may be better-served by the “futures” pattern, wherein

each task serves as a placeholder for a data value that is yet to be computed [4]. Dynamic

parallelism may be achieved by spawning nested tasks from executing tasks. Finally,

12

asynchronous programming is possible through continuations, which are tasks that may

only be started once an antecedent task (or collection thereof) completes.

Collectively, the aforementioned patterns may be visualized as giving rise to a graph-

structured flow of execution, whose directed edges represent control dependencies among

the tasks. Whilst the patterns’ flexibility permits task graphs to be composed arbitrarily, this

requires careful design from the application developer. In some cases, it may be possible to

raise the level of abstraction further by providing pre-composed task graphs through

structured parallelism.

2.2.3 Structured Parallelism

Figure 2.3. Stack of parallelism abstractions, demonstrating how each level builds on the one below

it to simplify the developer’s role in harnessing the machine’s multiprocessing capabilities.

D&C

Thread Scheduler
(pre-emptive time-sharing)

Processors

Task Scheduler
(thread pool servicing task queues)

Threads

Tasks

 𝑓𝑐 𝑓𝑠 𝑓𝑒 𝑓𝑚

Skeletons

Explicit Parallelism

Threaded Parallelism

Task Parallelism

Structured Parallelism

Skeleton Evaluator
(generates task graph)

13

Structured parallel frameworks empower developers to express their algorithm as an

instance of a parallel pattern from a supplied patterns library. These patterns would

correspond to classes of algorithms that are popular candidates for parallelization [3], [35],

such as loops of independent iterations, or decomposable problems that are solved

recursively using a divide-and-conquer approach [25], [31]. By taking advantage of the

natural boundaries intrinsic to the algorithm, structured parallelism captures the

developer’s algorithmic intent [4], rather than a specific tortuous implementation.

Structured parallelism insulates application developers from the responsibility of defining

parallel units of execution at any degree of granularity. Rather, developers would only need

to specify how such parallelism may be extracted from the problem, leaving it up to the

runtime to avail of this potential. Consequently, the runtime may apply heuristics to

dynamically come up with a good strategy for splitting up the work into parallel chunks,

whilst accounting for data locality and load balancing (as exemplified through the various

loop scheduling schemes in OpenMP [36]).

Algorithmic skeletons present a common formalization of structured parallelism [37]. By

building on a consistent collection of patterns, skeletal programming aims to “transcend

architectural variations”, permitting portability across disparate architectures whilst

maintaining performance through architecture-specific implementations of the patterns

library [35].

2.2.4 Divide-and-Conquer Skeleton

The divide-and-conquer (D&C) skeleton provides the common algorithmic pattern

underlying our investigation. The skeleton is functionally parameterized through:

a condition function, ; a split function, ; an inner skeleton, ; and a merge function,

 [25]. In general, the inner skeleton could be defined as another skeleton type,

permitting nested recursion [25]. However, for the scope of our experiments, we will

assume that the inner skeleton will correspond to the execution of a muscle function, ,

which represents the sequential operation serving as the base case of the divide-and-

conquer recursion.

The semantics of the D&C skeleton are as follows [25], [27]: Given an initial problem, the

condition function is applied to determine whether it should be split. If affirmative, the

problem is divided into a collection of subproblems using the ‘split’ function, which are

14

then fed into the same D&C skeleton to be processed recursively. Once all the

corresponding subresults have been computed, they are combined through the ‘merge’

function to give the result for that level. On the other hand, if the condition function

declined to split, then the problem is fed into the ‘execute’ function, which directly

computes its corresponding result. This is demonstrated diagrammatically in Figure 2.4.

Figure 2.4. Activity flow for the D&C skeleton.

The self-referential definition of the D&C block underlies its recursive execution.

D&C’s potential parallelism arises from the concurrent evaluation of the independent

subproblems at each level of the recursion [27], wherein each subproblem may cause a

new task to be spawned. The number of subtasks produced by each invocation of the split

function is known as the “branching factor”, and may be as small as two. However, each

recursion level causes the degree of concurrency to increase exponentially – for example,

after a recursion depth of ten, a binary D&C algorithm may have as many as 1024 tasks

available for concurrent execution.

D&C

yes

execute
muscle D&C D&C

subproblems

subresults

problem

result

split

merge

…

no

should
split?

𝑓
𝑐

𝑓
𝑒

𝑓
𝑚

𝑓
𝑠

15

2.3 Thread Scheduling

General-purpose operating systems employ a thread scheduler for allocating available

threads onto processors for execution. Such schedulers typically use time-slicing, whereby

multiple threads may be given the illusion of concurrent execution on the same processor

by being each run for short periods, known as quanta, in a round-robin manner [6], [28].

Once a thread’s quantum expires, it is pre-empted, and the scheduler picks the next thread

to be swapped in.

This approach promotes fairness, but also incurs overheads, since a context switch must be

performed at the end of each quantum [28]. Each context switch needs to save the

processor state of the current thread, and load the saved state of the next thread; this

procedure takes several clock cycles. Furthermore, context switches impose indirect

performance penalties due to the “perturbation of processor caches like the instruction,

data, address translation, and branch-target buffers” [38]. Context switching among

threads associated with different virtual address spaces requires the processor’s translation

lookaside buffer (TLB) to be invalidated; consequently, any caches tagged using virtual

addresses would need to be flushed [38].

On symmetric multiprocessing architectures (such as SMT and CMP), the operating system

can schedule a thread onto any processor. In such cases, the scheduler’s goal is to achieve

load-balancing by having the current workload distributed more or less evenly across all

processors. At the same time, the scheduler also aims to promote affinity – a given thread

should be kept running on the same processor for as long as possible, in order to improve

its potential for cache reuse, and only migrated to another processor when there is a

specific need to restore the load balance [12], [28]. Most systems also allow thread affinity

to be controlled explicitly by the user, who may pin a specific thread to a subset of the

processors.

2.3.1 Processor Partitioning

As the number of cores in commodity multiprocessing machines continues to rise, the

inadequacy of mainstream schedulers for executing parallel workloads is becoming more

pronounced [12]. By treating each thread as an independent unit of execution, schedulers

forgo consideration of inter-thread dependencies that could have a significant impact on

the throughput of the system. Specifically, collaborating threads that are tightly-

16

coordinated or share a lot of data would execute faster if scheduled onto the same core or

chip [12].

Processor partitioning is a technique whereby specific threads are pinned to specific

processors in a manner that promotes their inter-thread affinity [13]. Threads executing on

the same physical core (through oversubscription or simultaneous multithreading) would

share its private L1 and L2 caches; threads executing on distinct cores within the same

physical chip share the L3 cache; whilst threads executing on distinct chips may only

intercommunicate through main memory [39]. Thus, closely-related threads would benefit

from constructive interference if allocated to proximate processors, since cache reuse is

boosted by the locality of reference (both temporal and spatial) arising from their

overlapping working sets [39].

Most parallel programs are configured to initialize at least as many threads as there are

logical cores, so as to fully utilize the multiprocessor machine when run in isolation [12],

[13], [34]. When running as part of a multiprogram workload, the programs themselves

provide a natural boundary for processor partitioning [12], [40] (see Figure 2.5). By pinning

each compute-intensive program’s threads to run on a dedicated subset of the machine’s

cores, performance gains may be reaped due to the “high cache-hit ratio and low

synchronization overhead” [40]. Additionally, the context-switching performance penalty is

significantly reduced: Since the threads would be associated with the same virtual address

space, the TLB and caches do not need to be flushed [38].

Figure 2.5. Processor partitioning by program. In a multiprogram context, threads belonging to the

same program instance may execute faster when scheduled onto the same core or processor chip,

rather than intermingled with the other programs’ threads.

17

As cores become abundant, processor partitioning may also serve to provide “performance

isolation and security between multiprogrammed applications” [3].

2.3.2 Program Scalability

Figure 2.5 (above) depicts an egalitarian partitioning strategy, where each program is

allocated an equal number of cores. However, this strategy is suboptimal when the

programs exhibit different scalabilities, since highly-scalable programs would (by definition)

perform better when allocated large numbers of cores than poorly-scalable ones would –

in fact, some programs cease to yield any speedup altogether beyond a certain degree of

concurrency. For this reason, system throughput may be boosted by partitioning the

processors among the programs based on their scalability [13], as exemplified in Figure 2.6

(below).

Figure 2.6. Processor partitioning by program scalability. In this example, the first program is twice

as scalable as the second (for some notion of scalability), and is therefore allocated twice as many

processors. Similarly for the third and fourth programs, which are only half as scalable as the second.

2.4 Performance Metrics

There is broad consensus that the preferred performance metric for an individual program,

 , should be its execution time (i.e. wall-clock time), [41]. The speedup of a program, , is

defined as the ratio of its sequential execution time on a single processor, , to its

parallel execution time on the multiprocessing machine, , and is the prevalent metric

for evaluating parallel processing systems [42]. Efficiency, , is the ratio of the speedup to

the number of processors used [43].

 16× 8× 4× 4×

18

Eyerman & Eeckhout [41] present various metrics for assessing system-level performance

of multiprogram workloads. By executing a single program, , in isolation, granting it

exclusive access to all the machine’s processors, one may obtain its performance in “single-

program mode”,
 . When executed concurrently with other programs, one would

measure its “multiprogram mode” performance,
 .

The latter performance intuitively depends on the degree of multiprogramming and the

nature of the other programs. However, even for a fixed multiprogram workload, the

performance would vary depending on the implementation of the scheduler responsible for

distributing the programs over the available cores. Thus, by testing different schedulers

against a given workload, one can quantitatively measure and compare the efficacies of

their scheduling strategies.

2.4.1 Turnaround Time

Eyerman & Eeckhout [41] promote normalized turnaround time, , as the main user-

oriented performance metric for each program, since it “quantifies the user-perceived

turnaround time slowdown due to multiprogram execution”.

This value may be averaged across all executing programs to obtain a system-level

measure, average normalized turnaround time () [41]:

 ∑

 , which is adopted by Sasaki et al. [13], is a lower-is-better metric. When the degree

of multiprogramming is , is expected to vary between an ideal value of (which

indicates that there is no program interference or resource contention whatsoever) and an

upper bound of (which would be equivalent to executing the programs consecutively in

isolation) [41].

19

A related system-level metric is maximum normalized turnaround time (), which is

similarly defined [41]:

(

)

2.4.2 Throughput

Eyerman & Eeckhout [41] suggest that performance studies should also use a system-

oriented metric such as throughput, which measures “the number of programs completed

per unit of time” and, therefore, gives an indication of the rate at which each program

progresses. Each program’s normalized progress, , is the reciprocal of its :

The system throughput, , may be obtained by summing the normalized progress of

each program, giving a higher-is-better metric, that again ranges between and [41]:

 ∑

2.4.3 Variability

Typical hardware architectures are nondeterministic at the clock-cycle level. Each processor

chip, as well as main memory, is driven by its own local clock, which can give rise to minor

timing fluctuations whenever they interact over buses [44]. Pre-emptive thread scheduling

at the operating system level introduces further unpredictability, since a program may get

interrupted at arbitrary points in time [45]. The effects of these factors are amplified in

parallel scenarios, where differences in the outcomes of resource contention may lead to

substantial performance variability [45]. Therefore, any performance measurements should

be consolidated by running experiments repeatedly and applying statistical methods over

the results, as discussed for our experiments in Section 6.3 (p. 79).

20

2.5 Parallel Programming in .NET Framework

We developed our implementation artefacts using the .NET Framework, with C# as the

programming language. As a high-level software development platform, .NET is similar in

scope to Java, but has seen significant improvements in its support for parallel

programming since .NET 4.0 (released in 2010), which introduced structured parallelism

through the Task Parallel Library (TPL) and Parallel LINQ (PLINQ) [26], [34]. Furthermore, C#

supports first-class anonymous functions, including lambda expressions, which are hailed as

“necessary ingredients” for enabling the succinct expression of parallelism using a library-

based approach in a strongly-typed language [8].

http://www.microsoft.com/net
http://msdn.microsoft.com/en-us/library/618ayhy6.aspx
http://msdn.microsoft.com/en-us/library/dd460717.aspx
http://msdn.microsoft.com/en-us/library/dd460688.aspx
http://msdn.microsoft.com/en-us/library/bb882516.aspx
http://msdn.microsoft.com/en-us/library/bb397687.aspx

21

Chapter 3: Related Work

This chapter will be mostly dedicated to the designs underlying existing task schedulers,

which serve as the foundation for our multiprogram scheduler. The last section describes

the scalability-based manycore partitioning (SBMP) scheduler of Sasaki et al. [13], thereby

exposing the orthogonal scheduling approach offered by processor partitioning.

3.1 Task Schedulers

Our investigation focuses on programs expressed as instantiations of the divide-and-

conquer skeleton. In Section 2.2.4 (p. 13), we discussed how this skeleton could be

unravelled to provide potential parallelism as a series of tasks. However, for these tasks to

effectively utilize the concurrent capabilities of multiprocessing machines, they need to be

serviced by a task scheduler that can map them onto the available processors. We shall

now study the design of the task schedulers powering two parallel libraries: Skandium [25]

and Microsoft Task Parallel Library (TPL) [8], [34]. (Other mainstream task schedulers are

provided by Intel Threading Building Blocks (TBB) [6], [46] and OpenMP [7], but will not be

discussed here due to space constraints.)

3.1.1 Skandium

Skandium [25] evaluates skeletons using a producer–consumer workflow, wherein each

skeleton produces tasks to a shared task queue, known as the “ready queue”, whence they

may be consumed by a pool of worker threads for execution. By default, the size of the

thread pool is equal to the number of logical cores on the machine.9

Initially, each skeleton would enqueue the root task representing the top-level problem

instance. As each task is being processed, it may dynamically spawn further subtasks; these

are also added to the ready queue, pending execution. Subsequently, the parent task

transitions into the waiting state, making it ineligible for scheduling. The procedure is

repeated recursively according to the skeleton structure, until one arrives at the muscle

functions, which, being sequential, are directly executed. Once all its subtasks have been

9
 As explained in Section 2.1 (p. 7), simultaneous multithreading permits each physical core to

execute multiple threads concurrently at the hardware level; these are called “logical cores”.

22

completed, the parent task is reinserted into the ready queue, so that it may subsequently

collate the results of its subtasks and complete its execution [25].

Figure 3.1. Task scheduling in Skandium, depicting how the pool of worker threads

services the ready queue of pending tasks. Copied from Leyton & Piquer [25].

The use of a centralized queue in Skandium serves as a source of contention, since its

access must be synchronized across all threads. This issue becomes more pronounced as

the granularity of the tasks becomes smaller and/or the number of cores becomes larger,

leading to a point where the synchronization overheads would offset any performance

benefits from the parallel execution [34].

3.1.2 Task Parallel Library

Task Parallel Library (TPL), by default, uses a work-stealing task scheduler that is tightly

integrated with the thread pool of the .NET Framework. This scheduler mitigates the

bottleneck arising from Skandium’s centralized queue by maintaining a dedicated task

queue for each worker thread, with threads mainly fetching tasks from their own local

queues. If its local queue becomes empty, a thread may fetch tasks from the global queue,

which would contain the root tasks. (In our case, the root tasks would represent the top-

level problem generated by each D&C program instance.) If the global queue is also empty,

a thread may engage in work-stealing from another thread’s queue [8], [34].

In order to promote data locality, worker threads add and remove tasks at the same end of

their local queue in LIFO fashion. The rationale is that a recently-added task is more likely to

share some of the same data as the last-executed task; thus, the data may be reused from

23

cache. On the other hand, thief threads steal tasks from the opposite end of the remote

queue. This is particularly beneficial for divide-and-conquer algorithms, since it inherently

promotes load-balancing by ensuring that the largest tasks (from higher levels in the

recursion) are stolen first, thereby keeping the thief thread busy for a substantial period of

time before its queue becomes empty again [8], [34].

Figure 3.2. Global queue and per-thread local queues in TPL, showing

LIFO pushing/popping of local tasks, and FIFO work-stealing of remote tasks.

Copied from the “Task Parallel Library” article by Sacha Barber on CodeProject.

The internal implementation of the task queue uses lock-free execution to minimize the

synchronization required for preventing race hazards when multiple threads contend to

take tasks from the same queue. Specifically, the algorithms for pushing and popping tasks

at the local queue avoid the need for acquiring an explicit lock in the majority of cases, only

falling back to locking when there is a chance of being raced by a thief thread [8].

The .NET thread pool dynamically adjusts its number of worker threads using a hill-climbing

heuristic that aims to maximize throughput. By design, once they start executing, tasks

cannot be pre-empted from their worker thread; thus, a task that blocks (due to I/O or

synchronization) would stall its processor. In such cases, thread injection is used to avoid

underutilization and starvation [34]. However, since the heuristic does not distinguish

http://www.codeproject.com/Articles/159533/Task-Parallel-Library-2-of-n

24

between blocked tasks and long-running compute-intensive operations, thread injection

can result in counterproductive thread oversubscription.

TPL’s default scheduler achieves high throughputs and improved scalabilities over large

numbers of processors [8]. Leyton & Piquer [25] report a 3.4× speedup when using

Skandium to run quicksort over 8 cores; Leijen et al. [8] push this up to 5.1× using TPL,

registering an improvement of 50% (without accounting for experimental or

implementational differences).

Internally, TPL implements this default scheduler within the ThreadPoolTaskScheduler

class. Apart from its tight coupling with the thread pool, this class is declared as both

internal and sealed, making it impossible to extend without reverse-engineering. Mono has

a similar internal implementation within its Scheduler class.

3.1.3 Work-Stealing Task Scheduler

In their “Samples for Parallel Programming with the .NET Framework” project, Microsoft

provide the source code for a number of custom task schedulers. Among these, one finds

the WorkStealingTaskScheduler class,10 which implements a work-stealing task scheduler

whose function is quite similar to a simplified version of the TPL default scheduler. The

main behavioural difference is that it does not employ thread injection, but abides by the

fixed concurrency level specified to its constructor.

Figure 3.3 (below) shows how task schedulers derive from TaskScheduler, the abstract

base class that serves as the extension point through which TPL allows custom task

schedulers to hook into its task infrastructure [34]. The main abstract method that derived

classes need to implement is QueueTask, for queuing a new task onto the concrete

scheduler.11

10
 The implementation of this class is discussed in the “Building a custom thread pool: a work

stealing queue” blog post by Joe Duffy.

11
 This method is never called directly from user code. Rather, it is called by the TPL infrastructure

(under the hood) whenever the user creates a new task to be scheduled onto the specific

scheduler, such as by calling a TaskFactory.StartNew overload that accepts a TaskScheduler

parameter.

http://msdn.microsoft.com/en-us/library/7c5ka91b.aspx
http://msdn.microsoft.com/en-us/library/88c54tsw.aspx
https://github.com/mosa/Mono-Class-Libraries/blob/master/mcs/class/corlib/System.Threading.Tasks/Scheduler.cs
http://code.msdn.microsoft.com/ParExtSamples
http://msdn.microsoft.com/en-us/library/system.threading.tasks.taskscheduler.aspx
http://msdn.microsoft.com/en-us/library/system.threading.tasks.taskscheduler.queuetask.aspx
http://www.bluebytesoftware.com/blog/2008/08/12/BuildingACustomThreadPoolSeriesPart2AWorkStealingQueue.aspx
http://www.bluebytesoftware.com/blog/2008/08/12/BuildingACustomThreadPoolSeriesPart2AWorkStealingQueue.aspx
http://msdn.microsoft.com/en-us/library/system.threading.tasks.taskfactory.startnew.aspx

25

Figure 3.3. Class diagram showing the composition of the task schedulers. The built-in

ThreadPoolTaskScheduler and the sample WorkStealingTaskScheduler

both derive from the TaskScheduler base class.

The structure of the WorkStealingTaskScheduler is shown in Figure 3.4 (below). It spawns

a batch of worker threads to operate its scheduling logic, with the aim of efficiently

executing any queued tasks. It initializes a Queue<Task> to serve as the global queue, as well

as a thread-local WorkStealingQueue<Task> to be the local queue for each worker thread.

Both of these data structures can expand their capacities dynamically to accommodate any

number of tasks as required. The LocalPush and LocalPop methods of the

WorkStealingQueue data structure internally employ low-lock techniques (using the

Interlocked class for atomic operations) to reduce synchronization overheads, whilst all

other accesses are protected as critical sections (using the Monitor class).

ThreadPool
TaskScheduler ThreadPool

WorkStealing
TaskScheduler

m_concurrencyLevel

Queue

Enqueue
Dequeue

WorkStealingQueue

LocalPush
LocalPop
TrySteal

.NET Framework Class Library

Microsoft
Parallel

Programming
Samples

1 1

0..1

*

1

1 *

1

1

1

1 *

Thread

TaskScheduler

MaximumConcurrencyLevel

QueueTask
TryExecuteTaskInline

TryExecuteTask

http://msdn.microsoft.com/en-us/library/7977ey2c.aspx
http://msdn.microsoft.com/en-us/library/system.threadstaticattribute.aspx
http://msdn.microsoft.com/en-us/library/system.threading.interlocked.aspx
http://msdn.microsoft.com/en-us/library/system.threading.monitor.aspx

26

Figure 3.4. Structure of the work-stealing task scheduler, containing

one global task queue and per-thread local queues. The number of

worker threads typically corresponds to the number of logical cores.

WorkStealingTaskScheduler implements the inherited QueueTask method such that new

tasks are pushed onto the local queue if originating from a worker thread, or enqueued to

the global queue otherwise, as shown in Figure 3.5 (below).

Each worker thread primarily services its own local queue. Once this empties, it picks up

new externally-introduced tasks from a global queue. If this also empties, it steals from

other threads’ queues, as depicted in Figure 3.6 (below). In any case, once a task is picked,

it is executed through the inherited TryExecuteTask method of the base TaskScheduler

class.

We shall be using the WorkStealingTaskScheduler class as the basis of our schedulers,

with minor modifications to improve its extensibility for our requirements, as discussed

from Section 5.1 (p. 55) onwards.

Work-Stealing
Task Scheduler

Thread Scheduler

global queue

lo
cal q

u
eu

es

http://msdn.microsoft.com/en-us/library/system.threading.tasks.taskscheduler.tryexecutetask.aspx

27

Figure 3.5. Task production in the work-stealing task scheduler. Worker threads push

new tasks to their local queues, whilst external threads add to the global queue.

Figure 3.6. Task consumption in the work-stealing task scheduler. In order of preference,

worker threads attempt to consume tasks from: ① their local queue; ② the global queue;

③ other threads’ queues (work-stealing).

Work-Stealing
Task Scheduler

global queue

lo
cal q

u
eu

es

Enqueue

Local Push

Work-Stealing
Task Scheduler

global queue
lo

cal q
u

eu
es

Local Pop

Dequeue

Try Steal ③ ①

②

28

3.2 Partitioning Schedulers

Sasaki et al. [13] propose a scalability-based manycore partitioning (SBMP) scheduler,

designed for multithreaded multiprogrammed workloads executing on manycore machines.

The scheduler dynamically infers each program’s scalability and thereby attempts to come

up with an optimal core allocation that maximizes the system’s performance according to

some desired metric, such as average normalized turnaround time (ANTT). For each

program, the scheduler maintains a scalability table that records its relative performances

when executed on various numbers of cores. Program performance is measured by

counting cumulative retired instructions per second (IPS), using performance monitoring

units (PMUs) provided by the processors. This information is collated across all programs,

and used to drive a hill-climbing algorithm for arriving at a global assignment decision.

The SBMP scheduler performs a repartitioning either when a program is created or

terminated, or when a program’s scalability is detected to have changed sufficiently to

signify a different execution phase. Experimental results show that the SBMP scheduler can

outperform the default Linux scheduler by 18% for single-phase programs, and by 8% for

programs in general when phase prediction is enabled [13].

29

Chapter 4: Skeleton Designs

In this chapter, we present our design for the divide-and-conquer skeleton, first describing

its interface and high-level structure, then delving into the execution pattern that underlies

its implementation. Sections 4.3–4.5 will subsequently be dedicated to an exposition of the

parallel programs we developed upon this skeleton, including a discussion of various design

considerations that affect their performances.

4.1 Divide-and-Conquer Skeleton

4.1.1 Functional Parameterization

The divide-and-conquer (D&C) skeleton serves as the foundation for all our parallel

programs in this investigation. Its algorithmic structure has already been discussed in

Section 2.2.4 (p. 13); we shall now describe how we adapt it to the task infrastructure of

the Microsoft Task Parallel Library (TPL).

At the root of our design, we define a base class, DivConBase, whose four abstract methods

permit the functional parameterization of the D&C skeleton:

1 public abstract partial class DivConBase<TParam, TResult>
2 {
3 protected abstract bool ShouldSplit(TParam problem, int level);
4 protected abstract TParam[] Split(TParam problem, int level);
5 protected abstract TResult ExecuteMuscle(TParam problem, int level);
6 protected abstract TResult Merge(TResult[] subResults, int level);
7
8 public Task<TResult> Input(TParam problem) { /* … */ }
9 }

Figure 4.1. D&C skeleton class basics, with type signatures adapted from Skandium [25].

Abstract methods are to be overridden by concrete implementations of D&C programs.

Leijen et al. [8] extol parametric polymorphism (generics) as a “necessary ingredient” for

expressing structured parallelism in strongly-typed languages. We employ two type

parameters: TParam for the parameter type that will represent our problem (and

subproblem) instances, and TResult for the result (and subresults).

http://msdn.microsoft.com/en-us/library/512aeb7t.aspx

30

4.1.2 Execution Interface

As shown in Figure 4.1 (above), the only functionality exposed publicly for consumers is the

Input method, which represents an asynchronous invocation of the D&C skeleton on the

specified top-level problem instance. The returned Task<TResult> instance is a “future”,

from which the final result may eventually be obtained, once the computation completes,

through its Result property. Accessing this property before the task has completed would

cause the current thread to block, similar to calling Wait under the fork–join pattern.

Figure 4.2. Three-level divide-and-conquer execution flow

split

yes

split

yes

split

yes

execute
muscle

no

execute
muscle

no

execute
muscle

no

execute
muscle

no

merge

merge

merge

should
split?

should
split?

should
split?

should
split?

should
split?

should
split?

should
split?

input

http://msdn.microsoft.com/en-us/library/dd321424.aspx
http://msdn.microsoft.com/en-us/library/dd321468.aspx
http://msdn.microsoft.com/en-us/library/system.threading.tasks.task.wait.aspx

31

Under the hood, Input dynamically creates a task graph, where each split spawns further

subtasks, as exemplified in Figure 4.2 (above). Conceptually, the Task<TResult> future

returned from the method call would be equivalent to the final merge. The details of this

behaviour will be discussed in Section 4.2 (p. 33).

The performance implications of the rhombus-like shape of this task graph are, in effect, a

manifestation of (an extended version of) Amdahl’s Law [47]. A D&C program gradually

transitions from sequential to parallel (during splitting) and back (during merging).

Specifically, for a branching factor , a program would have tasks at level of the

recursion.

4.1.3 Scheduling Extensibility

One of the strongest design features of TPL is its separation of the task abstraction from the

task scheduler, permitting the various parallel patterns defined in Section 2.2.2 (p. 11) to be

executed using custom task schedulers as described in Section 3.1.3 (p. 24). Most task-

creation facilities, such as TaskFactory.StartNew (for spawning root tasks or subtasks) and

Task.ContinueWith (for registering continuations), accept a TaskScheduler parameter,

through which custom schedulers may be specified [34].

We exploit this architectural extensibility by designing our D&C skeleton to accept a

TaskScheduler instance as one of its parameter, which it will subsequently use for

scheduling all the tasks it creates during its execution.

4.1.4 Declarative Model

C# supports first-class anonymous functions, such as lambda expressions, which permit

parallel constructs to be expressed succinctly [8]. This functional style of programming may

be blended with structured parallelism in imperative languages to reap the “rich sources of

concurrency” exposed through the higher-order functions [4], such as is done in PLINQ for

exploiting data parallelism. This way, one may approach the abstractional power of

declarative systems, where developers can focus on the problem-domain logic, whilst

remaining agnostic to the control flow underlying the program execution and, therefore,

largely unaware of any notion of sequential or parallel execution [27].

http://msdn.microsoft.com/en-us/library/system.threading.tasks.taskfactory.startnew.aspx
http://msdn.microsoft.com/en-us/library/system.threading.tasks.task.continuewith.aspx
http://msdn.microsoft.com/en-us/library/system.threading.tasks.taskscheduler.aspx
http://msdn.microsoft.com/en-us/library/bb397687.aspx
http://msdn.microsoft.com/en-us/library/dd460688.aspx

32

To demonstrate this concept, we provide a declarative interface to our D&C skeleton, which

can be consumed as shown in the simplified parallel quicksort implementation below:

12

1 var quickSort = CustomDivConFactory.Create<int[], int[]>(
2 taskScheduler: TaskScheduler.Default,
3 shouldSplit: (nums, level) => nums.Length > 1024 && level < 10,
4 split: nums => new [] {
5 nums.Where(n => n < nums[0]),
6 nums.Where(n => n >= nums[0]) },
7 executeMuscle: nums => { Array.Sort(nums); },
8 merge: results => results[0].Concat(results[1]));
9
10 int[] source = new [] { 8, 2, 9, 1, 0, 4, 15, 3, /* ... */ };
11 int[] sorted = quickSort.Input(source).Result;

Figure 4.3. Simple parallel quicksort, expressed declaratively

Figure 4.3 testifies to the expressive power of structured parallelism. When combined with

LINQ, it permits a parallel (albeit inefficient) implementation of the quicksort algorithm to

be fully expressed in just eight lines. (By contrast, a subclassing-based implementation of

parallel quicksort in Skandium requires four classes spanning 26 lines of code [25].)

Furthermore, it is trivially easy to also parallelize the split logic just by slapping an

AsParallel decorator call onto the arrays, thereby achieving nested parallelism.

4.1.5 Object-Oriented Model

Notwithstanding its succinctness, the inefficiencies arising from the code in Figure 4.3

(above) betray the issues that may arise from such a functional expression. LINQ is designed

to honour referential transparency (like in functional languages); thus, our declarative

skeleton causes a new array to be created behind the scenes for each Where and Concat call

(at each level of recursion), leading to huge memory demands.

Given that we are targeting shared-memory multiprocessors, we can design our D&C

skeleton to assume statefulness, thereby taking advantage of the design benefits of object-

oriented programming (OOP). For sorting algorithms, we can discard the notion of

referential transparency and permit in-place implementations, using encapsulation to

12
 We assume that the reader is familiar with the parallel quicksort algorithm. For a quick overview

of how it may be implemented using the D&C skeleton, refer to Section 4.4.4 (p. 46). Note that

the implementation in Figure 4.3 (above) simplistically picks the first element, nums[0], as the

pivot value; in practice, this can lead to highly-unbalanced splits, and is discouraged.

http://msdn.microsoft.com/en-us/library/bb397926.aspx
http://msdn.microsoft.com/en-us/library/system.linq.parallelenumerable.asparallel.aspx
http://msdn.microsoft.com/en-us/library/bb534803.aspx
http://msdn.microsoft.com/en-us/library/bb302894.aspx

33

maintain a single instance of the elements array internally. Similarly, we employ inheritance

and polymorphism to structure our programs as a class hierarchy, with common

functionalities implemented in base classes and overridden as necessary in subclasses, as

discussed in Section 4.3 (p. 39).

4.2 Task Generation

We shall now explain how the D&C skeleton dynamically generates the task graph

portrayed in Figure 4.2 (p. 30) along its recursive execution. We present two possible design

patterns, and discuss their comparative performances.

4.2.1 Fork–Join Pattern

Both Leijen et al. [8] and Campbell et al. [34] advocate a fork–join pattern for parallel

divide-and-conquer algorithms. In Figure 4.4, the recursive case of the parallel quicksort

implementation uses Parallel.Do 

13 so that the two subranges can be sorted in parallel.

1 static void ParQuickSort<T>(T[] dom, int lo, int hi)
2 where T : IComparable<T>
3 {
4 if (hi - lo <= Threshold)
5 InsertionSort(dom, lo, hi);
6
7 int pivot = Partition(dom, lo, hi);
8 Parallel.Do(
9 delegate { ParQuickSort(dom, lo, pivot - 1); },
10 delegate { ParQuickSort(dom, pivot + 1, hi); }
11);
12 }

Figure 4.4. Parallel quicksort using fork–join pattern. Copied from Leijen et al. [8].

We generalize this behaviour to be applicable across all D&C algorithms implemented using

our skeleton; a condensed version of our implementation is given in Figure 4.5. In the

recursive case, the parent task splits the problem into subproblems, spawns subtasks for

processing each subproblem, collects their respective subresults, and finally merges them.

13
 The Parallel.Do method has been renamed to Parallel.Invoke in the official release of TPL.

http://msdn.microsoft.com/en-us/library/system.threading.tasks.parallel.invoke.aspx

34

1 public Task<TResult> Input(TParam problem, int level = 1)
2 {
3 // Spawn a new task for processing the current problem.
4 return TaskFactory.StartNew(() => Process(problem, level));
5 }
6
7 protected virtual TResult Process(TParam problem, int level)
8 {
9 // Check whether to split the current problem.
10 if (ShouldSplit(problem, level))
11 {
12 // Split the current problem into subproblems.
13 TParam[] subProblems = Split(problem, level);
14
15 // Process each subproblem recursively (using new subtasks).
16 var subTasks = new Task<TResult>[subProblems.Length];
17 for (int i = 0; i < subProblems.Length; ++i)
18 subTasks[i] = Input(subProblems[i], level + 1);
19
20 // Collect the subresult from each subtask.
21 var subResults = new TResult[subProblems.Length];
22 for (int i = 0; i < subProblems.Length; ++i)
23 subResults[i] = subTasks[i].Result;
24
25 // Merge subresults to obtain the current result.
26 return Merge(subResults, level);
27 }
28 else
29 {
30 // Execute muscle to obtain result directly for current problem.
31 return ExecuteMuscle(problem, level);
32 }
33 }

Figure 4.5. Task execution in D&C skeleton using fork–join parallelism

Unfortunately, this approach has a fundamental design shortcoming. In both above

implementations, each recursive step incurs a synchronization barrier (inherently in the

Parallel.Do call or aggregately when reading the subtasks’ Result property), causing the

parent task to block (as if calling WaitAll) until all its subtasks complete. Since task

scheduling is not pre-emptive, the blocked parent task does not relinquish control of the

thread it is executing on, but holds on to it, keeping it unavailable for processing other

tasks.

A possible workaround would be to process one of the subproblems directly within the

parent task (thereby reducing the number of spawned subtasks by one at each recursive

step). However, this introduces inconsistency into the design [34], and hinders the task

scheduler’s flexibility due to the parent task becoming extensively long-lived, preventing

reallocation to another thread for the duration of its execution.

http://msdn.microsoft.com/en-us/library/dd321468.aspx
http://msdn.microsoft.com/en-us/library/dd270695.aspx

35

In the spirit of the aforementioned optimization, TPL introduces the notion of “task

inlining”: 

14 If the current thread is instructed to wait on a task that has not yet started being

executed by another thread, then the scheduler may allow it to execute the said task

directly, rather than block. However, the behaviour is nondeterministic, since the parent

thread could be outraced by thief threads stealing its tasks, consequently being constrained

to block. Additionally, even if inlining is successful and the parent thread gets to execute a

subtask, it might subsequently still need to block until all the other subtasks complete too.

This imposed synchronicity is particularly problematic for unbalanced D&C algorithms, such

as quicksort.

The default thread pool in the .NET Framework mitigates the issue by firing up new worker

threads to compensate whenever a task blocks or takes too long to complete.15 Apart from

incurring thread overheads, this approach is unsuitable for our scheduler, since most of our

tests require a fixed degree of concurrency. Such bounded schedulers are susceptible to

starvation, with all threads but one getting blocked (despite the availability of abundant

pending tasks). In fact, it was this performance degeneration that spurred us to come up

with a better execution pattern.

4.2.2 Asynchronous Execution

The solution we devised was to switch the recursion from a blocking operation to an

asynchronous one. Whenever a parent task spawns subtasks, it attaches a continuation to

each subtask, and then finishes, freeing up its thread for other tasks. Within the

continuation, each subtask checks whether it is the last to complete from among its siblings

(by performing an atomic decrement on a shared counter initialized to the number of

subtasks); if it is the last, it spawns a new task constituting the merge operation for the

parent level of the recursion.

14
 Refer to the “Task.Wait and ‘Inlining’ ” article by Stephen Toub for an explanation.

15
 Thread injection has been mentioned in Section 3.1.2 (p. 23); refer to the “.NET CLR Thread Pool

Internals” article by Aviad Ezra for an elaboration.

http://msdn.microsoft.com/en-us/library/ee372288.aspx
http://msdn.microsoft.com/en-us/library/1z4b2e5y.aspx
http://blogs.msdn.com/b/pfxteam/archive/2009/10/15/9907713.aspx
http://aviadezra.blogspot.co.uk/2009/06/net-clr-thread-pool-work.html
http://aviadezra.blogspot.co.uk/2009/06/net-clr-thread-pool-work.html

36

Figure 4.6. Blocking vs. asynchronous execution of D&C recursion

A condensed version of our asynchronous implementation is given in Figure 4.7 (below). Its

logic is modelled after the internal implementation of the TaskFactory.ContinueWhenAll

method in TPL.16 An essential component is the TaskCompletionSource, which acts as the

producer side for a task whose state can be controlled explicitly (rather than through the

scheduler).17 The TaskCompletionSource is signalled by the last subtask to complete,

causing the merge task (which would be registered as its continuation) to get scheduled.

Since all this behaviour is intrinsic to the TPL infrastructure, no thread-blocking

synchronization is involved.

16
 We could not call this method directly since its implementation is buggy (prone to deadlock)

under some versions of Mono.

17
 Refer to “The Nature of TaskCompletionSource<TResult>” by Stephen Toub.

Asynchronous Execution Blocked Execution

—
 b

lo
cked

 —

m
erge

th
re

a
d

 1

m
u

scle
th

re
a

d
 2

th
re

a
d

 3

th
re

a
d

 4

sp
lit

m
u

scle

tim
e

an
o

th
er task

m
erge

th
re

a
d

 1

m
u

scle
th

re
a

d
 2

th
re

a
d

 3

th
re

a
d

 4

sp
lit

m
u

scle

http://msdn.microsoft.com/en-us/library/ee362142.aspx
http://msdn.microsoft.com/en-us/library/dd449174.aspx
http://blogs.msdn.com/b/pfxteam/archive/2009/06/02/9685804.aspx

37

1 // Create a task source to indicate completion
2 // when all subtasks collectively complete.
3 var completionSource = new TaskCompletionSource<bool>();
4 int subTasksLeft = subProblems.Length;
5
6 // Register a continuation for each subtask.
7 foreach (var subTask in subTasks)
8 subTask.ContinueWith(_ =>
9 {
10 // Atomically decrement the number of subtasks left,
11 // and set the completion source if it was the last.
12 if (Interlocked.Decrement(ref subTasksLeft) == 0)
13 completionSource.SetResult(true);
14 });
15
16 // Register a continuation to the completion source,
17 // so that the merge task is spawned when all subtasks complete.
18 Task<TResult> mergeTask = completionSource.Task.ContinueWith(_ =>
19 {
20 // Collect the subresult from each subtask.
21 var subResults = new TResult[subProblems.Length];
22 for (int i = 0; i < subProblems.Length; ++i)
23 subResults[i] = subTasks[i].Result;
24
25 // Merge subresults to obtain the current-level result.
26 return Merge(subResults, level);
27 });

Figure 4.7. Task execution in D&C skeleton using asynchronous parallelism (excerpt)

A complication present in this design is its recursive treatment of futures. Since the Process

method is now asynchronous, it returns as soon as it spawns its subtasks, without waiting

for the recursive subcomputation to complete. Thus, it cannot return the subresult of its

merge operation directly (TResult); rather, it must return a future representing the merge

task itself (Task<TResult>).

The recursive nature of D&C requires this notion of futures to be propagated across the

recursion levels. At level , the merge task must follow the collective completion of all its

level subtasks, whose merge tasks must, in turn, have followed all their respective

level subtasks, and so on. The merge tasks are not available immediately when the

subtasks are spawned, but would be constructed dynamically as they execute.

Thus, when the Input method spawns a subtask, it does not acquire a Task<TResult>, but a

Task<Task<TResult>> representing a future that will eventually give the merge task. This

nested asynchronicity quickly becomes unwieldy when ascending back up the recursion

graph, so we unravel it at each step using TaskExtensions.Unwrap, as shown in Figure 4.8.

http://msdn.microsoft.com/en-us/library/dd781129.aspx

38

This nifty method converts a Task<Task<TResult>> into a Task<TResult> by creating a

proxy task that returns the result once the inner task completes.18

1 public Task<TResult> Input(TParam problem, int level = 1)
2 {
3 // Spawn a new task for processing the current problem.
4 Task<Task<TResult>> outerTask = TaskFactory.StartNew(() =>
5 this.Process(problem, level));
6
7 // Create a proxy task that unwraps the inner task.
8 return outerTask.Unwrap();
9 }

Figure 4.8. Unravelling nested asynchronicity at each recursive step

The asynchronous implementation yielded significant performance gains over the fork–join

pattern, approaching twofold speedups for highly-scalable programs. Furthermore, it

improved their performances’ consistency (reducing variance), since the nondeterministic

risk of blocking is eliminated.

18
 Refer to the “How to: Unwrap a Nested Task” article on MSDN for more details. The Unwrap

method may be internally implemented using a TaskCompletionSource, as is done in .NET 4.0

and Mono (per its TaskExtensionsImpl class).

http://msdn.microsoft.com/en-us/library/ee795275.aspx
https://github.com/mono/mono/blob/1b92a4148cf4973d49f3b1772acbd2752cfea115/mcs/class/corlib/System.Threading.Tasks/TaskExtensionsImpl.cs

39

4.3 Program Hierarchy

Now that we have explained how our D&C skeleton runs, we shall discuss how we built our

parallel programs atop it, as outlined in Figure 4.9.

Figure 4.9. Class hierarchy for the D&C skeleton and programs

DivConBase, whose implementation we have been discussing so far, represents the core

D&C skeleton, embodying the logic for executing arbitrary D&C algorithms as a task graph

on a specified scheduler.

TestableDivCon introduces some convenient functionality for our tests, such as the

Initialize abstract method, which is to be overridden by the parallel programs for

initializing problem instances with random data. Its Time method may be called to initialize

such a random problem and measure its execution time. The BranchingFactor property

should be overridden to give the appropriate value according to the D&C algorithm.

DivConBase

TaskScheduler
TaskFactory

ShouldSplit
Split
ExecuteMuscle
Merge

+ Input
Process

TestableDivCon

+ BranchingFactor

+ Initialize
+ Reinitialize

+ Run
+ Time

GranularDivCon

+ ProblemSize
+ Granularity

GetProblemSize

ElementsBase

+ SourceElements

SumOfSquares MonteCarloPi QuickSort

MergeSort StrassenMultiply

MapReduce

Map
Reduce

SortBase

+ SortedElements

Foundation Classes

Intermediate Classes

Concrete Classes

40

GranularDivCon introduces the notion of granularity. Concrete programs are expected to

implement the GetProblemSize method for indicating the size of a specified problem (or

subproblem) instance, with the semantics of such a measure being left up to the program

itself (as long as its values are numeric). For example, sorting algorithms can return the

number of elements falling under the current subrange. Similarly, concrete programs

should set the ProblemSize property to indicate the size of their overall problem (whose

data may be generated randomly during initialization), whilst Granularity should give the

target subproblem size at which to stop splitting (thereupon proceeding to compute the

subproblem directly through the sequential execute muscle). In return for programs

supplying this context, our D&C framework can support richer interaction with their

execution, as discussed in Section 4.5.2 (p. 50).

ElementsBase serves as the basis for parallel programs operating over large collections of

elements, such as map–reduce and sorting algorithms. It implements the Initialize

method to generate an array of random numbers whose length corresponds to

ProblemSize; this array is stored in its SourceElements property. ElementsBase fixes the

TParam type to be Range, which contains Min and Max indexes representing the bounds of

the current range (or subrange). It also provides a nominal implementation of the Split

method that takes a range and divides it evenly into a sequence of subranges, whose

number is equal to the BranchingFactor value. For example, with a branching factor of 4,

the range would be split into , , , and .

MapReduce may be seen as a specialization of the D&C skeleton to handle map–reduce

programs (and thereby qualifying as a skeleton in its own right). It defines its own set of

abstract methods to be overridden by concrete programs, as presented in Figure 4.10, with

the Reduce operation assumed to be associative. However, it fully implements all of the

D&C skeleton’s methods to channel the computation to Map and Reduce. (For more details

and a concrete example, refer to Section 4.4.1, p. 42.)

1 public abstract partial class MapReduce<TElement, TResult>
2 : ElementsBase<TElement, TResult>
3 {
4 protected abstract TResult Map(TElement element);
5 protected abstract TResult Reduce(TResult res1, TResult res2);
6 protected virtual TResult Reduce(TResult[] results) { /* ... */ }
7 }

Figure 4.10. Map–reduce methods for functional parameterization

41

SortBase, the base class for sorting algorithms, introduces the SortedElements property.

For in-place sorting implementations, this would reference the very same array as

SourceElements; otherwise, it is initialized to an empty array of the same length, to be

populated with the sorted result. SortBase implements ExecuteMuscle to call the .NET

built-in Array.Sort method for handling the base case of the recursion (like Skandium uses

Java’s Arrays.sort in the base case of its parallel quicksort [25]).

4.4 Sample Programs

We shall now mention the repertoire of parallel programs that we implemented as

instances of our D&C skeleton. After consulting Tsogkas [48] for an analysis of the

characteristics of some D&C algorithms, we handpicked a selection that is well-suited for

the scope of our experiments; namely, compute-intensive applications spanning a good

range of scalabilities.

Figure 4.11. Colour convention for the D&C diagrams presented in the rest of this section

merge

execute execute

split

http://msdn.microsoft.com/en-us/library/8kszeddc.aspx

42

4.4.1 Sum of Squares

The sum-of-squares program is a simple map–reduce instance, where Map is a squaring

operation () and Reduce is a summation (). By default, it initializes an array of

134,217,728 integers in memory (equivalent to 512 MB), populated with random values

ranging from 0 to 1024. (The exclusive upper bound is kept low so as to avoid integer

overflows.)

Figure 4.12. Sample D&C execution of sum-of-squares

Figure 4.12 shows a sample execution of this program. The split operation just divides the

current range according to the branching factor. At the base case, the map operation

(squaring) is iteratively applied over all elements belonging to the current subrange, with

35017 23112

 58129

∑

9803 13309

 23112

∑

20374 14643

 35017

∑

64 38 92 21 77 55 18 34 27 97 7 73 52 11 40 39 53 85 35 23

4096 1444 8464 441 5929 3025 324 1156 729 9409 49 5329 2704 121 1600 1521 2809 7225 1225 529

x²

 20374 14643 9803 13309

∑ ∑ ∑ ∑

 64 38 92 21 77 55 18 34 27 97 7 73 52 11 40 39 53 85 35 23

 64 38 92 21 77 55 18 34 27 97 7 73 52 11 40 39 53 85 35 23

43

their results aggregated using the reduce operation (summation). Finally, the merge

operation again applies the reduce operation to aggregate the subresults from its subtasks.

Map–reduce programs allow their branching factor to be altered to an arbitrary value. For

example, the branching factor may be set to correspond to the number of logical cores on

the machine, so that full concurrency would be achieved after just one split (as shown in

Figure 4.13 for the next program). However, since the split and merge operations are

computationally trivial, the performance gain is negligible.

The data parallelism offered by map–reduce programs such as sum-of-squares is

embarrassingly parallel, yielding near-linear speedups even on manycore machines,

thereby belonging to the top end of our scalability spectrum.

4.4.2 Monte Carlo Pi

The MonteCarloPi program uses a Monte Carlo simulation to estimate the value for (pi).19

Assume a circle whose radius, , is 0.5 units, inscribed within a square of length, , 1. Using

standard definitions, we know that:

By combining the two equations and substituting our dimensions, we can compute the ratio

of their areas, , as:

Conversely, if is known, we could compute as:

We therefore employ Monte Carlo methods to estimate this ratio by sampling a large

number of random points within the square, and testing how many of them fall within the

19
 This explanation is adapted from the “Estimating Pi with Monte Carlo Methods” tutorial by

Joe Freeman.

http://joefreeman.co.uk/blog/2009/07/estimating-pi-with-monte-carlo-methods/

44

circle using Pythagoras’ theorem. For example, if 785,113 out of 1,000,000 random points

fall within the circle, then we could estimate as:

Figure 4.13. Sample D&C execution of Monte Carlo Pi

This computation is trivial to parallelize. The program does not require any initialization; the

initial problem is defined to be the number of random points to be sampled, and set to

1,073,741,824 (being) for our experiments. In the split operation, this number is

divided evenly among the subtasks. Like in SumOfSquares, the branching factor may be set

to an arbitrary value; in the example on Figure 4.13, we set this to 4, equivalent to the

number of logical cores on that machine. In the base case, the Monte Carlo simulation is

performed for the given number of points, and the number of in-circle points returned as

the subresult. In the merge operation, the subresults are summed to obtain the total

number of in-circle points overall.

196,064 196,339

 785,113

196,513 196,197

∑

 250,000 250,000 250,000 250,000

 196,513 196,197 196,064 196,339

250,000 250,000

1,000,000

250,000 250,000

÷

45

4.4.3 Strassen Matrix Multiplication

The Strassen algorithm for matrix multiplication [49] permits large square matrices (of

order) to be multiplied with an asymptotic complexity of (), which is

approximately , and therefore improves upon the complexity of the standard

matrix multiplication algorithm. It partitions each of the given pair of matrices, and ,

into four submatrices of order

, denoted as – and – . It subsequently performs

a set of 7 subcomputations on these, – , each involving submatrix addition and

multiplication:

 () ()

 ()

 ()

 ()

 () ()

 () ()

The algorithm’s suitability for the D&C skeleton arises from this submatrix multiplication,

which may be performed recursively, using the Strassen algorithm again. (The branching

factor of this program is therefore 7.) Once all subcomputations have completed, the result

matrix, , may be computed through its partitions:

The execution flow is shown in Figure 4.14 (below). Both the split and the merge tasks need

to perform submatrix additions (since, due to the D&C skeleton design, the subtasks can

only take care of the recursive multiplications). Submatrix additions have an algorithmic

complexity of . Despite being substantially lighter than the multiplications’ or

 , these still incur a computational overhead, meaning that this parallel program will

not be as scalable as the previous two.

46

Figure 4.14. Sample D&C execution of Strassen matrix multiplication.

Only a single split level is shown here for simplicity. In practice, most runs would use 2 or 3 levels,

resulting in 49 or 343 execute muscles respectively.

For our tests, we initialize our program with a pair of square matrices of order 1536,

thereby each having 2,359,296 elements (9 MB), randomly populated with values

between 0 and 1024 (exclusive).

4.4.4 Quicksort

Quicksort [50] is a sorting algorithm that, on average, can sort items with

comparisons. Its recursive definition makes it a natural D&C candidate. In the split

operation, it picks a pivot value, and reorders the array such that all elements smaller than

the pivot are placed together at its front, whilst all elements larger than the pivot are

placed together at its rear. (We arbitrarily lump elements equal to the pivot with the latter

group.) Subsequently, the two subarrays are sorted recursively. Once a subarray’s length

falls below a threshold (being the target granularity), the recursion is stopped and the base

case engaged, which calls .NET’s sequential Array.Sort method (as mentioned on p. 41).

The merge operation does nothing.

I

A
1,1

 A
1,2

A
2,1

 A
2,2

B
1,1

 B
1,2

B
2,1

 B
2,2

III IV V VI VII II

C
1,1

 C
1,2

C
2,1

 C
2,2

http://msdn.microsoft.com/en-us/library/8kszeddc.aspx

47

Figure 4.15. Sample D&C execution of quicksort. In this example, each pivot value (shown in bold)

is chosen arbitrarily from among the first few elements of the subarray.

Quicksort’s amenability to parallelization comes from the disjoint quality of the subarrays

resulting from each split, permitting them to be processed independently. However, each

split operation performs a sequential sweep over the elements in its array (or subarray),

entailing comparisons. Consequently, the parallelism is unravelled gradually, with the

level split operation(s) being processed over tasks (i.e.). This limits the

scalability of the program, since several processors would remain unutilized for the early

levels of the recursion.

For our tests, we initialize an array of 67,108,864 integers (256 MB), randomly populated

with non-negative 32-bit integer values. Quicksort is our only parallel program that exhibits

unbalanced behaviour, since the sizes of – and, therefore, work associated with – the

subarrays may vary substantially, depending on the choice of the pivot value. To minimize

this misbalance, at each split, we sample the first 100 elements of the subarray and pick

 73 77 85 92 97 40 52 53 55 64 27 34 35 38 39 7 11 18 21 23

 73 77 85 92 97 40 52 53 55 64 27 34 35 38 39 7 11 18 21 23

55 97 64 92 77 39 52 40 85 73 35 23 34 27 38 7 11 18 21 53

73 77 85 92 97 39 40 52 55 64 23 27 34 35 38 7 11 18 21 53

55 97 64 92 77 53 85 73 52 40 34 27 38 21 39 35 23 7 11 18

55 97 64 92 77 52 40 53 85 73 23 34 27 38 39 7 11 18 21 35

 55 97 64 92 77 53 85 73 52 40 34 27 38 21 39 35 23 7 11 18

7 73 52 11 40 39 53 85 35 23 64 38 92 21 77 55 18 34 27 97

48

their median as the pivot. (Systematic sampling, which surveys elements spread throughout

the subarray, might have yielded sturdier pivot choices, but incurs heavy memory

overheads since, for large subarrays, each sample would incur a cache miss.)

4.4.5 Mergesort

Mergesort is another D&C sorting algorithm that is similar to quicksort, but performs its

work in the merge phase instead of the split phase. In the split phase, it just divides the

range of elements evenly among its subtasks. In the base case, it also uses .NET’s sequential

Array.Sort method to sort the elements along the subrange. Finally, in the merge phase, it

sweeps sequentially along the elements from the pair of independently-sorted subranges

and rewrites them in-order, incurring comparisons.

Figure 4.16. Sample D&C execution of mergesort. Unlike quicksort,

this D&C sorting algorithm always produces size-balanced subtasks.

73 77 85 92 97 40 52 53 55 64 27 34 35 38 39 7 11 18 21 23

40 52 53 73 85 7 11 23 35 39 55 64 77 92 97 18 21 27 34 38

21 38 64 77 92 18 27 34 55 97 7 11 40 52 73 23 35 39 53 85

55 64 77 92 97 18 21 27 34 38 40 52 53 73 85 7 11 23 35 39

64 38 92 21 77 55 18 34 27 97 7 73 52 11 40 39 53 85 35 23

21 38 64 77 92 18 27 34 55 97 7 11 40 52 73 23 35 39 53 85

 64 38 92 21 77 55 18 34 27 97 7 73 52 11 40 39 53 85 35 23

 64 38 92 21 77 55 18 34 27 97 7 73 52 11 40 39 53 85 35 23

http://msdn.microsoft.com/en-us/library/8kszeddc.aspx

49

Mergesort suffers from the same processor underutilization issue as quicksort, since the

merge operations at the final levels of the recursive ascent may only be performed through

a limited number of tasks. Furthermore, mergesort is an out-of-place algorithm (as opposed

to the in-place quicksort), meaning it is expected to perform slower. For our tests, we use

the same problem size as for quicksort.

4.5 Common Design Considerations

4.5.1 Program Reinitialization

One of our major concerns for the cyclic multiprogramming performance tests (discussed in

Section 5.4.1, p. 76) was the issue of reinitializing each program’s problem data between

one run and the next. Under these tests, each program is reinitialized and restarted

immediately upon completing (whilst the others are still executing). However, given that

several of our programs work against large memory arrays (256 MB for sorting; 512 MB for

map–reduce), reinitializing a program’s data whilst other programs are executing could lead

to substantial negative interference, especially on the shared off-chip memory bandwidth,

if the programs happen to be executing on cores belonging to the same processor chip [51].

To avoid this, we redesigned our system to eliminate the need for reinitialization by reusing

the same data across consecutive runs of the same program instance. The extent of illicit

performance gains arising from such data reuse (such as from temporal locality or warmed-

up branch predictors) is limited, due to the large sizes and randomized nature of the data

arrays.

However, two of our programs, quicksort and mergesort, were designed to overwrite their

data while running. A sorting algorithm executed over pre-sorted data completes in

drastically less time, even if the number of comparisons performed is identical, due to

highly-successful branch prediction.20 Thus, we extended our sorting programs to support

non-destructive execution by writing their results to a distinct array, rather than

overwriting the source. By integrating the “copying” into the algorithm itself, the overheads

20
 Refer to the StackOverflow question “Why is processing a sorted array faster than an unsorted

array?” and the detailed explanation given in its accepted answer for a fascinating discussion of

this behaviour.

http://stackoverflow.com/q/11227809/1149773
http://stackoverflow.com/q/11227809/1149773
http://stackoverflow.com/a/11227902/1149773

50

are minimized: In mergesort, the copying is fully parallelized as part of the execute muscle,

whilst in quicksort, it is performed organically within the first-level split (whilst the

elements are being split based on the pivot). On 64 cores, the performance loss for

quicksort is merely 3%, whilst for mergesort, the non-destructive version surprisingly

achieves a gain of 3%.

4.5.2 Granularity

In Section 4.3 (p. 40), we mentioned that the GranularDivCon base class introduces the

notion of granularity, thereby permitting our framework to interact with the D&C programs

by acquiring awareness of their problem sizes. A rudimentary benefit is that it can provide a

standard implementation of the ShouldSplit method, as shown in Figure 4.17.

1 public abstract partial class GranularDivCon<TParam, TResult>
2 : TestableDivCon<TParam, TResult>
3 {
4 public long ProblemSize { get; set; }
5 public long Granularity { get; set; }
6
7 protected abstract long GetProblemSize(TParam problem);
8
9 protected override bool ShouldSplit(TParam problem, int level)
10 {
11 return GetProblemSize(problem) > Granularity;
12 }
13 }

Figure 4.17. Main components of the GranularDivCon class

ShouldSplit may still be overridden by the concrete programs to provide more restrictive

behaviour. For example, StrassenMultiply ceases to be efficient if the orders of the

matrices drop below a certain threshold, making it preferable to stop splitting (and switch

to standard matrix multiplication) before this happens.

The GranularDivCon class also allows our framework to trivially create sequential instances

of our D&C programs, by setting their Granularity to be equal to their ProblemSize

(representing the overall problem size). This way, their first (and only) invocation of

ShouldSplit would return false, causing the D&C skeleton to proceed to compute the

entire problem directly through a single ExecuteMuscle call (without any Split or Merge

operations).

51

Another benefit of the GranularDivCon design is that our system can heuristically compute

a suitable value of Granularity for parallel systems, alleviating this decision from the

application developer. Under the current implementation, the system sets this value such

that it results in a number of execute muscles that is approximately equal to a small

multiple of the number of logical cores on the machine. Campbell et al. [34] recommend

16 tasks per core for quicksort, to compensate for the inherent load-imbalance among its

subtasks. However, given our improved pivot-selection heuristic in quicksort, as well as the

better load-balance in the other programs, we found that good performances could be

achieved even when using a target of just 4 execution muscles per core.

For D&C programs whose split operation reduces the problem size by the same factor as

the branching factor, the granularity is straightforward to compute: An approximate target

of execute muscles may be achieved by setting the granularity to ⁄ the overall problem

size. Among our programs, the only exception is the Strassen multiplication, whose split

operation reduces the problem size by a factor of 4 (since each submatrix has ⁄ the

number of elements of its parent matrix), despite the branching factor being 7. Thus, a

target of execution muscles requires the granularity to be set to
 ⁄ the overall

problem size.21

The above computation is an approximation only in the case of D&C algorithms whose split

operation may produce unbalanced subproblems – namely, quicksort. Instead of

granularity, one could alternatively have used the recursion depth as the basis of the split

condition. The second parameter of the ShouldSplit method provides the current

recursion level; by comparing this against a target recursion depth, one could constrain the

D&C program to produce an exact number of execute muscles (provided that this number is

a power of the branching factor). Specifically, for a program with a branching factor of , a

total of execute muscles may be produced by splitting until a recursion depth of .

21
 This result is mathematically related to the algorithmic complexity of the Strassen algorithm,

which is () [49]. Note that Strassen assumes to be the order of the matrix, rather than

its number of elements (which would be the order squared).

52

The issue with using the recursion depth as the split condition is that, unlike granularity, it

does not even out load misbalance. Figure 4.18 (below) shows how the two strategies

influence the division of a problem of size 1000 into a target of 4 execute muscles. A level-

based approach would split until a recursion depth of 2 to produce exactly 4 muscles,

whilst a granularity-based approach would split until the subproblem size is 250. In our

example, the latter approach produces 5 muscles (one more than the target); however,

their subproblem sizes vary by a standard deviation of merely 27, as opposed to 191 for

the level-based approach.

Figure 4.18. Delimiting the split phase based on recursion depth (top) versus granularity (bottom).

The tasks are drawn to-scale with respect to their subproblem sizes; however, this should not be

construed as representative of their computational requirements, since the split operation is

typically substantially cheaper to process than the execute muscle for a given subproblem size.

Note that none of our D&C programs suffer from such extreme misbalance in practice.

1000

775 225

100 575 200 125

Level 1

Level 2

Level 3

1000

775 225

575 200

Level 1

Level 2

Level 3

Level 4 150 425

225 Level 5 200

53

4.5.3 Nested Parallelism

In our programs, we have assumed that the split and merge operations of our D&C

programs should be sequential. The reasons behind this decision were threefold: It

conforms to the definition of the D&C skeleton muscles in Skandium [48]; it simplifies the

design of our programs; and it makes their performances easier to analyse. However, as

mentioned briefly in Section 4.1.4 (p. 32), we acknowledge that better scalabilities might be

possible by parallelizing these operations as well.

54

Chapter 5: Scheduler Designs

The previous chapter explained how our D&C skeleton empowers programs to leverage its

structured parallelism to transparently generate task graphs. This fulfils the first

parallelization challenge presented in Section 2.2 (p. 9): problem decomposition. Now, we

proceed to address the next challenge: the efficient distribution of tasks onto processors

for concurrent execution.

We open this chapter by explaining how we extend the structure of the traditional work-

stealing task scheduler to support explicit processor affinity through thread pinning. In

Section 5.2, we present a number of multiprogramming schemes that permit concurrently-

executing programs to feed their tasks into one or more task schedulers, showing how a

shared scheduler would eliminate the need for thread oversubscription. Section 5.3 is the

most important part of our system design, since it presents the novel approach through

which we reconcile task parallelism with processor partitioning, discussing both mechanism

and policy. Finally, Section 5.4 gives an overview of the principal tests that we ran to

evaluate our system, whose results will be presented towards the end of Chapter 7.

55

5.1 Scheduler Hierarchy

Figure 5.1 extends the class hierarchy presented in Figure 3.3 (p. 25) to introduce the two

task schedulers of our system.

Figure 5.1. Class diagram showing the composition of our task schedulers.

The one-to-one correspondence between affine threads and processors is an

imposition of our system; in practice, the relationship may be many-to-many.

WorkStealing
TaskScheduler

m_concurrencyLevel

Free
TaskScheduler

Affinity
TaskScheduler

Queue

Enqueue
Dequeue

AffineThread

SetAffinity

AffineThreadLinux

AffineThreadWindows

WorkStealingQueue

LocalPush
LocalPop
TrySteal

.NET Framework Class Library

Microsoft
Parallel

Programming
Samples

Our System

1

1 1 *

1

1

1

1 *

1 *

1

1 1

Thread

TaskScheduler

MaximumConcurrencyLevel

QueueTask
TryExecuteTaskInline

TryExecuteTask

56

5.1.1 Free Task Scheduler

Our FreeTaskScheduler is a lightweight wrapper over the WorkStealingTaskScheduler

from the Microsoft Parallel Programming Samples (described in Section 3.1.3, p. 24). The

name was chosen to signify the liberty granted to the operating system’s thread scheduler

for allocating the worker threads onto the available processors (as opposed to the

AffinityTaskScheduler discussed in the next section). Due to inheritance, its structure is

the same as that of WorkStealingTaskScheduler (presented in Figure 3.4, p. 26).

We introduce some minor changes to improve the consistency of the scheduler’s behaviour

for our tests. Specifically, we alter its default number of worker threads to correspond to

the number of logical cores on the machine; we suppress initialization of new dedicated

threads for tasks marked as LongRunning; and we prohibit task inlining for external threads.

The latter change was crucial for getting sensible measurements of execution times over

limited concurrencies – with inlining permitted, some tasks would get executed on the main

thread itself, thereby illicitly inflating the actual degree of concurrency.

5.1.2 Affinity Task Scheduler

AffinityTaskScheduler extends FreeTaskScheduler such that, rather than accepting a

plain (numeric) concurrency level, its constructor can take a set of specific processor

identifiers. For each specified processor, AffinityTaskScheduler initializes an

AffineThread wrapper that creates a worker thread and pins it to the said processor, as

shown in Figure 5.2 (below).

The .NET Framework provides built-in support for setting processor affinity for threads

through its ProcessorAffinity interface; 

22 however, this functionality is not implemented

in Mono. Instead, we use Platform Invocation Services (P/Invoke), which play a similar role

to the Java Native Interface (JNI),23 to perform platform-specific system calls for setting

affinity. Specifically, we use SetThreadAffinityMask on Windows and sched_setaffinity

on Linux, structuring our class design to dynamically choose the appropriate call for the

current platform.

22
 Refer to the “Running .NET threads on selected processor cores” tutorial by Lenard Gunda.

23
 Refer to the ThreadAffinity Java class, implemented by Ruslan Cheremin, for sample JNI code.

http://code.msdn.microsoft.com/ParExtSamples
http://msdn.microsoft.com/en-us/library/system.threading.tasks.taskcreationoptions.aspx
http://msdn.microsoft.com/en-us/library/dd449178.aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.processthread.processoraffinity.aspx
http://msdn.microsoft.com/en-us/library/aa288468.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms686247.aspx
http://linux.die.net/man/2/sched_setaffinity
http://rebuildall.umbraworks.net/2010/03/08/Running_NET_threads_on_selected_processor_cores
http://trac.assembla.com/Behemoth/browser/Tests/JAVA/test/src/main/java/test/threads/ThreadAffinity.java

57

Figure 5.2. Structure of the affinity task scheduler. This scheduler builds on top of the

work-stealing task scheduler (whose structure was presented in Figure 3.4, p. 26),

inheriting its global queue and per-thread local queues. However, the

affinity task scheduler pins each worker thread to a distinct core.

5.1.3 Contiguous vs. Dispersed Allocation

Whenever our system needs to allocate a subset of any processors to an affinity task

scheduler, it defaults to assuming a contiguous allocation (e.g. processors to). Such

processor proximity can improve the performance of a parallel program due to constructive

interference (as discussed in Section 2.3.1, p. 16). However, cores residing on the same chip

share its off-chip bandwidth, which can become a performance bottleneck for parallel

programs with high memory access demands [51]. In order to investigate the extent of this

issue, we devised an alternate allocation strategy where the worker threads of the affinity

task scheduler are pinned to a dispersed subset of the cores, as depicted in Figure 5.3

(below). (Note that this allocation strategy is only employed for the stand-alone experiment

whose results are presented in Section 7.2.1, p. 86. For all other scenarios, contiguous

allocations should be assumed.)

Affinity
Task Scheduler

global queue

lo
cal q

u
eu

es

58

Figure 5.3. Contiguous vs. dispersed allocation of 8 pinned threads over

a 64-core machine comprised of four 16-core processor chips

5.2 Multiprogramming Schemes

Since our parallel programs are implemented as instances of the D&C skeleton, they need

to feed into a task scheduler before their computations may be delegated onto worker

threads. So far, our scheduling discussions have been agnostic of the program workload,

simply assuming that the programs would somehow have their top-level tasks inserted into

the appropriate scheduler’s global queue. We shall now proceed to describe a number of

multiprogramming schemes we devised, each of which shows how programs may be

serviced by one or multiple task schedulers.

Contiguous Allocation

Dispersed Allocation

59

5.2.1 Oversubscribed Free Multiprogramming

As mentioned in Section 2.3.1 (p. 16), parallel applications that have no awareness of their

system’s multiprogramming context would typically attempt to individually maximize their

utilization of the machine’s multiprocessing capabilities by initializing one thread (or more)

per logical core. This is particularly the case for task-parallel libraries, such as Skandium [25]

and TPL [34], which initialize such a pool of worker threads for servicing their task queues.

Thus, in a multiprogramming scenario, some processors would get oversubscribed with

multiple threads from the various programs (see Figure 5.4), leaving it up to the operating

system to schedule these threads efficiently using round-robin time-slicing.

Figure 5.4. Oversubscription by multithreaded applications. For simplicity, this diagram shows each

processor running exactly one thread from each application. In practice, most applications do not pin

their threads, meaning that the thread scheduler is free to migrate them into arrangements different

from the above.

We shall adopt this behaviour as the baseline against which to compare our optimizing

scheduler (discussed later) for tests involving multiprogrammed workloads. We could

simulate it either by running each program as a separate process, or by instantiating a

distinct task scheduler for each program instance, as illustrated in Figure 5.5 (below). We

picked the latter approach, since it allows us to run our programs within the same virtual

address space, simplifying the implementation of our tests.

processors

p
ro

gr
am

s

60

Figure 5.5. Oversubscription by task-parallel programs feeding dedicated task schedulers

Figure 5.6. Oversubscribed free multiprogramming. The thread scheduler is responsible for

distributing all the worker threads (from the various task schedulers’ respective thread pools)

over the available processors.

processors

p

ro
gr

am
s

task sch
ed

u
lers

Free Task Scheduler

Free Task Scheduler

Free Task Scheduler

Thread Scheduler

61

Under our “oversubscribed free multiprogramming” scheme, a distinct FreeTaskScheduler

is created per program, with each task scheduler initializing a free thread per core, as

shown in Figure 5.6 (above). Each program issues tasks to its own task scheduler. Since the

threads are not pinned, they can be migrated across processors by the operating system’s

thread scheduler, according to its own scheduling strategy.

5.2.2 Oversubscribed Pinned Multiprogramming

Under the “oversubscribed pinned multiprogramming” scheme, a distinct

AffinityTaskScheduler is created per program, with each task scheduler initializing a

pinned thread on each core, as shown in Figure 5.7. Thus, each core is oversubscribed

exactly per the degree of multiprogramming.

This scheme is identical to free multiprogramming, except that it inhibits any thread

migration by the operating system’s thread scheduler, and may therefore be used to

comparatively measure the performance benefit offered by the latter.

Figure 5.7. Oversubscribed pinned multiprogramming

Affinity Task Scheduler Affinity Task Scheduler Affinity Task Scheduler

62

5.2.3 Shared-Scheduler Multiprogramming

A drawback of thread oversubscription is that it incurs performance penalties whenever the

thread scheduler needs to context-switch among a processor’s threads, as discussed in

Section 2.3 (p. 15). If the oversubscribed threads belong to different programs, they would

not share any data. Rather, they would suffer from destructive interference due to their

contention over the limited cache space, causing each other’s data to be evicted, further

exacerbating the cost of the context switch due to the subsequent cache misses.

This behaviour is undesirable, especially when one considers that load-balancing is already

provided for by the work-stealing task scheduler (residing further up in the system runtime

architecture stack). Thus, rather than creating a distinct task scheduler with a plethora of

threads per program, we could improve performance by creating a single task scheduler

that is shared among all programs in the multiprogram workload. In practice, this simply

means that all the D&C skeleton instances representing our programs would insert their

top-level tasks into the same global queue, wherefrom they may get picked and distributed

among worker threads per the scheduling logic of the task scheduler.

Figure 5.8. Programs feeding a shared task scheduler

Thus, in the “shared-scheduler multiprogramming” scheme, a single

AffinityTaskScheduler is created for the entire test, initializing a single pinned thread on

each core. Each program issues tasks to this same shared task scheduler, as shown in

Figure 5.8 and Figure 5.9.

processors

p
ro

gr
am

s

task sch
ed

u
ler

63

Figure 5.9. Shared-scheduler multiprogramming scheme

5.2.4 Default-Scheduler Multiprogramming

In the “default-scheduler multiprogramming” scheme, all programs issue their tasks to the

default task scheduler provided for TPL by the .NET Framework or Mono (described in

Section 3.1.2, p. 22). Since this default scheduler is designed to run as a singleton, all

programs would be issuing their tasks to the same single scheduler. Thus, this scheme is

similar to the shared-scheduler scheme discussed in the previous section, except that the

default task scheduler’s implementation is likely to be better optimized, does not perform

thread pinning, and has the liberty of employing thread injection to gradually spawn new

worker threads (thereby oversubscribing some processors) when it deems fits.

Affinity
Task Scheduler

global queue

lo
cal q

u
eu

es

64

5.3 Multiprogramming Task Schedulers

In Section 2.3.1 (p. 15), we discussed the performance benefits that may be reaped from

pinning each program’s threads onto a distinct subset of the machine’s processors. In the

case of task parallelism or structured parallelism, programs do not have direct control over

the threads executing their computations; rather, these would be managed by the

underlying task scheduler, which commands a pool of worker threads for servicing its task

queue(s), as had been depicted in Figure 2.3 (p. 12).

5.3.1 Scheduler Partitioning

The crux of our project concerns the reconciliation of task parallelism with processor

partitioning, as illustrated in Figure 5.10. In doing so, we are transcending one level of

abstraction from traditional research in the latter area, which typically only considers

explicit thread parallelism [13].

Figure 5.10. Reconciliation of task parallelism with processor partitioning. This diagram depicts a pair

of D&C programs being executed as: spread across all processors (left); allocated to dedicated

subsets of the processors (centre); and having their granularity adjusted (right). The latter

optimization was a direction we explored early in our project, but decided not to pursue since its

effects were either marginal or counterproductive, as reported in Section 7.1 (p. 81).

P1 P2 P3 P4 P1

fs

P2 P3 P4

fs

fs

fs fs fs

fm fm fm fm

fm fm

fe fe fe fe

fe fe fe fe

fs

fs

fs

fs fs fs

fm fm fm fm

fm fm

fe fe fe fe

fe fe fe fe

P1

fs

P2 P3 P4

fs

fm fm

fe fe fe fe

sp
lit p

h
ase

m
erge p

h
ase

execu
te p

h
ase

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

tim
e

65

In its most basic form, task-parallel partitioning can be achieved by initializing a dedicated

task scheduler for each program, with its worker threads pinned to a distinct subset (or

“partition”) of the processors, as shown in Figure 5.11.

Figure 5.11. Processors partitioned among task schedulers servicing distinct programs.

In this example, the topmost program is allocated two processors,

whilst the others are only allocated one processor each.

Each task scheduler internally embodies work-stealing logic for enacting efficient load-

balancing among its allocated processors (see Figure 5.12 below). Therefore, there is no

need for thread oversubscription, permitting us to avoid the overheads of thread context-

switching altogether.

Section 5.1.2 (p. 56) mentioned that our AffinityTaskScheduler class can take a sequence

of processor identifiers as a parameter to its constructor, allowing one to specify the exact

set of processors over which it should spawn pinned worker threads. In a multiprogrammed

context, this permits complete control over the allocation strategy, making it possible to

experimentally attempt to identify the best-performing configuration for a given workload.

processors

p
ro

gr
am

s

task sch
ed

u
lers

66

Figure 5.12. Task schedulers can enact processor partitioning by pinning their

respective worker threads onto distinct subsets of the machine’s processors

5.3.2 Scalability-Based Partitioning

Whilst the flexibility offered through the explicit initialization of AffinityTaskScheduler

instances is suitable for experimentation, we wanted to design a solution that could come

up with performant allocations heuristically for any given multiprogram workload,

insulating the application developers from the responsibility of this decision. We build on

the direction taken by Sasaki et al. [13], as suggested in Section 2.3.2 (p. 17) and detailed in

Section 3.2 (p. 28), and use program scalability as a metric for guiding the processor

partitioning decisions.

For this end, we construct a MultiProgramScheduler class (see Figure 5.13 below). This

class takes an arbitrary multiprogram workload, and infers each program’s scalability to

come up with a suitable allocation for the entire workload.

Affinity Task Scheduler Affinity Task Scheduler Affinity Task Scheduler

67

Sasaki et al. [13] populate a scalability table that records each program’s speedups on

various numbers of cores, and subsequently apply a hill-climbing algorithm against it to

arrive at the allocation that should minimize the workload’s average normalized turnaround

time (ANTT). Our MultiProgramScheduler uses a simplified version of this heuristic that

assumes each program’s scalability to be a single numeric value corresponding to its

parallel speedup when executed in isolation over the entire machine. This way, it would

only need to measure each program’s sequential execution time and its fully-parallel

execution time (both averaged across multiple runs), and compute their ratio. We feel that

this simplification was justified in our scenario since our programs scale much more cleanly

than the PARSEC benchmark suite used by Sasaki et al. (For a graphical representation of

our actual scalabilities, refer to Section 7.2, p. 84.) In particular, our speedups always

increase monotonically with higher concurrencies, unlike PARSEC, which experiences

slowdowns in some cases [13].

Figure 5.13. Statically-partitioned multiprogramming. The multiprogram scheduler internally

initializes an affinity task scheduler for each program, with pinned worker threads

spanning its allocated processor range.

Multi-Program Scheduler

Affinity Task Scheduler Affinity Task Scheduler Affinity Task Scheduler

68

Once all these measurements have been taken, the programs are respectively allocated a

distinct contiguous range of processors whose size is proportionate to their scalability. For

example, given a workload of programs that individually exhibit 23×, 13×, and 12×

speedups on 64 cores, their multiprogrammed allocations would be 31, 17, and 16 cores

respectively. The contiguous allocation boosts proximity for processors allocated to the

same program, increasing the likelihood that they would share at least the L3 cache.

MultiProgramScheduler does not derive from TaskScheduler, and therefore does not

handle task scheduling directly. Instead, it internally creates an AffinityTaskScheduler for

each program, initialized with worker threads pinned to its respective processor allocation,

as shown in Figure 5.13 (above). This setup constitutes our “statically-partitioned

multiprogramming” scheme.

5.3.3 Dynamic Repartitioning

The multiprogram scheduler implementation described so far only performs static

partitioning, with processor allocations needing to be established before the multiprogram

workload commences being executed. In practice, this approach is inadequate, not least

because it cannot support the introduction of new programs into the workload after it has

commenced. Additionally, programs that complete execution cannot have their processors

reallocated to other ongoing programs, severely compromising the system’s overall

performance as the said processors remain unutilized. Finally, programs undergo various

phases along their execution, as observed by Sasaki et al. [13], making it unlikely that the

initial allocation is suitable for the entirety of their execution.

In order to address the above issues, we extend our MultiProgramScheduler’s design to

support dynamic processor reallocation across the task schedulers dedicated to the various

programs in the current workload. In our initial implementations, we worked at the thread

level: A processor reallocation is performed by shutting down the pinned worker thread

from the old task scheduler, and firing up a new one to replace it in the new task scheduler,

as depicted in Figure 5.14 (below).

The main appeal of this approach is the simplicity with which it builds upon the

AffinityTaskScheduler architecture. However, it incurs thread creation overheads for

each processor reallocation, succumbing to the same performance degradation that task

parallelism was designed to avoid.

http://msdn.microsoft.com/en-us/library/system.threading.tasks.taskscheduler.aspx

69

Figure 5.14. Thread-based processor reallocation, showing the termination of the

associated pinned thread from the centre scheduler’s pool, and the initialization

of its replacement in the right scheduler’s pool.

Therefore, we endeavoured to eliminate these threading overheads and come up with a

mechanism that can reallocate processors efficiently, which brings us to the culmination of

our system’s structural design. We take the novel step of decoupling the worker thread

pool from the task queue superstructure that it services. Each program is still associated

with a dedicated task scheduler that contains a global queue and per-thread local queues,

ensuring that work-stealing remains localized per program. However, the thread pools are

extricated from their fragmented distribution across the various task schedulers, and

instead combined into a unified pool managed by the workload-wide

MultiProgramScheduler, as shown in Figure 5.15 and Figure 5.16 (below).

Multi-Program Scheduler

Affinity Task Scheduler Affinity Task Scheduler Affinity Task Scheduler

70

Figure 5.15. Decoupling of thread pool from task queue superstructure.

This design drastically simplifies the procedure for processor reallocation.

Figure 5.16. Constitution of the multiprogram scheduler. This class diagram unites the D&C program

hierarchy from Figure 4.9 (p. 39) with the scheduler hierarchy from Figure 5.1 (p. 55). Note that each

affinity task scheduler now only aggregates (rather than composites) its affine threads.

Multi-Program Scheduler

Affinity Task Scheduler Affinity Task Scheduler Affinity Task Scheduler

Affinity
TaskScheduler

AffineThread

SetAffinity

Multi
Program

Scheduler
1

*

1 1

1

*

TestableDivCon

AvailableTasksCount

StrassenMultiply

SumOfSquares

MonteCarloPi

QuickSort

MergeSort

1

1

1
*

1

*

71

Figure 5.16 (above) shows that the multiprogram scheduler initializes a single thread pool,

with one worker thread pinned to each logical core. For each task-parallel program, it

initializes a dedicated affinity task scheduler, which will dynamically be assigned a subset of

the worker threads according to the scalability and task availability of its associated

program.

The assignment of worker threads to task schedulers is managed through a mapping

maintained dynamically by the MultiProgramScheduler instance. Consequently,

reallocating a processor from one program to another becomes a simple matter of

reassigning its pinned thread across their respective task schedulers. This is a lightweight

user-space operation, allowing threads to dart in and out of the various programs’ queue

superstructures without incurring system-level overheads.

Figure 5.17. Transitioning a worker thread across task schedulers. The procedure involves:

① relegating pending tasks from the local queue back onto the old global queue;

② reassigning the thread to the new task scheduler;

③ picking up a task from the new global queue.

Multi-Program Scheduler

Affinity Task Scheduler Affinity Task Scheduler Affinity Task Scheduler

3 1

2

72

Understandably, this transition mandates a number of task-level considerations in order to

be performed smoothly, without disrupting the task infrastructure’s expected behaviour.

The most important restriction is that an active task cannot be migrated across threads

once it has started executing, since this would otherwise violate “thread-affine

abstractions”, such as critical sections (which are meant to be entered and exited on the

same thread) [34]. Thus, we permit our worker thread to complete its current task before

commencing the transition.

Once the current task completes, the thread dumps any pending tasks from its local queue

back into the global queue of its former program’s task scheduler, in order for them to

subsequently be eventually picked up by the other threads still assigned to it. The

transferred thread then assumes a new local queue associated with the target scheduler,

and commences execution by fetching the first task from its global queue. This entire

procedure is outlined in Figure 5.17 (above). (The new local queue would then be gradually

populated with new locally-pushed tasks from the worker thread itself, per the usual logic

originally depicted in Figure 3.5, p. 27.)

5.3.4 Task-Availability-Based Repartitioning

In the previous section, we have described our structural design for enabling dynamic

processor repartitioning. In the spirit of the design principle promoting the separation of

mechanism and policy, we have architected this functionality such that it can be invoked to

accommodate the decisions made by any repartitioning strategy. We shall now proceed to

describe the policy we enacted for dynamically inferring performant allocations.

Due to the nature of the D&C skeleton, a program’s potential for parallelism is bounded by

its current recursion depth (as was discussed in Section 4.1.2, p. 31). For example, a

program executing its initial split or final merge would only have a single available task, and

may therefore only utilize one processor. A program’s potential parallelism increases

exponentially with each level of recursion, based on the program’s branching factor (which

is 2 for quicksort and mergesort; 7 for Strassen multiplication; and any arbitrary number for

map–reduce and Monte Carlo Pi). A simplified depiction of this effect is given in Figure 5.18

(below).

73

Figure 5.18. D&C execution under static partitioning. Each colour represents a D&C program, whilst

each coloured box represents the execution of one of its tasks. Uncoloured boxes indicate

processors that remain unutilized due to the curbed parallelism inherent in D&C algorithms.

Figure 5.19. D&C execution under task-availability-based repartitioning.

All processor slots are now utilized.

7 cores 5 cores 4 cores

processors

tim
e

processors

tim
e

74

Notwithstanding our focus on the D&C skeleton, we strived to come up with a policy that

could adapt to task parallelism in general. As the basis of our policy, we still use the

scalability measure described in Section 5.3.2 (p. 67); this gives us the base allocations.

Then, at regular intervals – say, every 100 ms – our system queries each parallel program in

the workload for its current number of available tasks. Using this collated information, the

system can identify any processor allocations that exceed their program’s current number

of available tasks, and reallocate them to other programs that have excess tasks available,

thereby boosting overall utilization. Figure 5.19 (above) shows the effect of this policy on a

cyclically-executed set of D&C programs.

Speedup on 32 cores 15.18 10.43 9.71

Scalability ratio 0.43 0.30 0.27

Proportional share 13.75 9.45 8.80

Base allocation 14 9 9

Tasks available 18 1 12

Capped allocation 14 1 9

Active allocation (with updated score):

Remaining: 8 14 (1.018) 1 (0.106) 9 (1.023)

Remaining: 7 15 (1.091) 1 (0.106) 9 (1.023)

Remaining: 6 15 (1.091) 1 (0.106) 10 (1.137)

Remaining: 5 16 (1.163) 1 (0.106) 10 (1.137)

Remaining: 4 16 (1.163) 1 (0.106) 11 (1.250)

Remaining: 3 17 (1.236) 1 (0.106) 11 (1.250)

Remaining: 2 18 (1.309) 1 (0.106) 11 (1.250)

Remaining: 1 18 (1.309) 1 (0.106) 12 (1.364)

Remaining: 1 18 (1.309) 1 (0.106) 12 (1.364)

Remaining: 0 18 (1.309) 2 (0.212) 12 (1.364)

Figure 5.20. Heuristic for reallocating processors among programs. Green-striped entries indicate

 the program selected for receiving another processor at the end of the current step. Red-striped

entries indicate programs not eligible to receive further processors during this stage.

Figure 5.20 gives a sample dry-run of the heuristic we use for dynamic repartitioning. The

first (topmost) part of the table shows the static (scalability-based) partitioning that is

75

performed when the workload is initially introduced; this gives the base allocations. In the

second part, we check how many tasks are available in each program, and cap their

allocations accordingly – this would require processing overall for programs.

In the third part, we introduce the notion of a “score” (displayed in parentheses), which is

taken to be the ratio of a program’s current allocation to (what would have been) its

proportional share (according to its scalability). This score is indicative of a program’s

relative eligibility for receiving more processors, with lower scores meriting higher

precedence. Thus, for each available processor, we pick the program with the lowest score,

and increment its current allocation by one. The influence of scalability on this procedure is

seen at the steps where there are 4 and 3 processors remaining, with the allocation in both

consecutive cases going to the leftmost program, due to its superior scalability.

Initially, we only allow processor allocations that do not exceed the target program’s

number of available tasks. However, if this limit is reached for all programs (due to an

insufficiency of tasks on a workload-wide level), we proceed to the fourth part, where we

apply the same procedure, but without the task-availability bound.

This reallocation heuristic is implemented efficiently using a heap structure; thus,

reallocating processors to programs only requires a total of steps, plus

some readjustments at the end to promote contiguity among the reallocations.

Furthermore, it is only applied when there actually exist programs in the workload that

have insufficient tasks; in all other cases (which should constitute the vast majority), the

repartitioning scheduler would only incur the initial check.

The efficacy of this strategy is equally applicable to scenarios where the workload varies

dynamically due to programs terminating, or new ones being introduced, at arbitrary points

in time. A program that terminates would have its processor allocation completely

redistributed among the remaining programs; similarly, a new program would be granted

some processors from the other programs according to its relative scalability.

This setup thereby constitutes our “dynamically-repartitioning multiprogramming” scheme:

A single MultiProgramScheduler is used to initialize a pinned thread on each processor, but

maintains a distinct AffinityTaskScheduler with work-stealing task queues for each

program, dynamically reallocating threads to programs based on their scalabilities and

numbers of available tasks.

76

5.4 Multiprogramming Test Strategies

To conclude our design chapters, we shall present the main test harness that we

implemented for evaluating the efficacies of the various task schedulers and

multiprogramming schemes.

In our initial experiments, we used to constrain our tests such that each program in the

multiprogram workload was only run once. Once all programs were ready, the overall

execution time was recorded, the programs collectively reinitialized, and then another test

started. However, this setup was not appropriate for system-level performance metrics,

since the last program to complete would effectively be executing in single-program mode,

causing results to get skewed by the longer-running programs.

5.4.1 Cyclic Tests

Figure 5.21. Cyclic test harness.
 denotes the measured execution time of the

st
 run

of program in single-program mode; similarly for
 in multi-program mode.

Once we eliminated the issue of interference arising from program reinitialization (see

Section 4.5.1, p. 49), we could implement a cyclic test harness to accurately measure the

programs’ performances, as depicted in Figure 5.21 (above). First, the single-program

 𝐶𝑋

𝑀𝑃

 𝐶𝑋

𝑀𝑃

 𝐶𝑋3

𝑀𝑃

 𝐶𝑋4

𝑀𝑃

 𝐶𝑌
𝑀𝑃

 𝐶𝑌
𝑀𝑃

 𝐶𝑍

𝑀𝑃

 𝐶𝑍

𝑀𝑃

 𝐶𝑍3

𝑀𝑃

 𝐶𝑍4

𝑀𝑃

 𝐶𝑍5

𝑀𝑃

processors

tim
e

 𝐶𝑌
𝑆𝑃

 𝐶𝑍

𝑆𝑃

processors

tim
e

 𝐶𝑋

𝑆𝑃

 𝐶𝑋

𝑆𝑃

 𝐶𝑋3

𝑆𝑃

 𝐶𝑌
𝑆𝑃

 𝐶𝑌3
𝑆𝑃

 𝐶𝑍

𝑆𝑃

 𝐶𝑍3

𝑆𝑃

77

execution time, , is measured for each program by running it in isolation over the entire

machine’s processors. The test is run 5 times for each program, and the average taken.

For measuring the multi-program execution times, , the test engine initializes the

problem data for all the programs, starts the timer, and launches the programs. As soon as

any program completes, the time elapsed is recorded, and the program immediately

restarted (whilst the others are still executing). This process is repeated until the timer

reaches a specified limit – after which, all subsequent timings are discarded (and programs

no longer restarted). The number of times that each program gets to run varies; however,

its multi-program execution time is taken as the average of all its measured timings.

Once we have all the above measurements in place, we can calculate each program’s

normalized turnaround time (NTT) and normalized progress (NP) per the definitions given in

Section 2.4 (p. 17), aggregating them to get the system-level performances.

78

Chapter 6: Experimental Setup

6.1 Hardware Platform

We perform our experiments on a Dell PowerEdge C6145 machine, consisting of two

processor-based servers. Each shared-memory server has four sockets with AMD Opteron

6276 “Interlagos” processors,24 each containing 16 cores, thereby giving a total of 64 cores

per server. Each core runs at a base frequency of 2.3 GHz and has a dedicated 1 MB L2

cache. Each processor shares a 16 MB L3 cache among its cores, and accesses main memory

via four HyperTransport 3.0 links, each having a peak bandwidth of 6.4 GT/s. Each server is

equipped with 128 GB of DDR3 memory.

Figure 6.1. Processor setup in the manycore servers. Each server

consists of 64 cores organized into four 16-core processor chips.

24
 Note that the term “processor” is used ambiguously across the industry. AMD considers each

chip of eight cores to collectively be a single processor, whilst software companies tend to treat

each core as a “processor” in its own right, as evidenced in “processor affinity” discussions. As

indicated in Section 1.4 (p. 4), we have assumed the latter convention throughout this document.

core

memory controller

L3 cache

AMD Opteron 6276

HyperTransport

http://www.dell.com/downloads/global/products/pedge/en/poweredge-c6145-server-specs-en.pdf
http://www.amd.com/uk/Documents/Opteron_6000_QRG.pdf
http://www.amd.com/uk/Documents/Opteron_6000_QRG.pdf

79

When submitting jobs (using the Sun Grid Engine) onto the manycore servers, we reserve

all their cores for the entire duration of our experiment, even in the case of tests utilizing

limited concurrency, thereby ensuring exclusive machine access. This way, we eliminate the

risk of interference from other users or programs, allowing us to obtain reproducible

results.

6.2 Software Platform

Our PowerEdge manycore has Scientific Linux 6.3 (running Linux kernel version 2.6.32 for

x86-64) installed as its operating system. Microsoft only targets the .NET Framework for

Windows platforms; thus, we will instead use Mono, an open-source cross-platform

implementation of the framework.25 We initially used the latest stable release for Linux,

Mono 2.10.8; however, this version suffered from severe performance issues when

multithreading on multiprocessor machines (including substantial ad hoc variance in the

execution times of identical sequential codes), as documented in our investigation posted

to StackOverflow under “Mono multiprocessing performance issue”. We subsequently

upgraded to the latest beta release, Mono 3.0.12, which seems to largely resolve the issue

through its new SGen garbage collector; we use this version for all our experiments.26

6.3 Statistical Methods

In order to obtain sensible results that would allow us to induce sound conclusions, each

test is run repeatedly (at least 10 times), and the execution times measured across all runs

averaged. Some tests engender such repetition intrinsically, such as the multitude of

readings given by each cyclic multiprogram test (as explained in Section 5.4.1, p. 76). For all

other tests, we authored a small script to submit multiple instances of the job to the

manycore machine (for consecutive execution), and then aggregate their results.

25
 The procedure for compiling Mono is described in the “Compiling Mono From Tarball” article on

the official Mono website.

26
 A new major stable release, Mono 3.2.0, was published on 24 July 2013. Whilst offering modest

performance gains on commodity machines, we found that this version suffered from stability

issues on Morar, frequently causing the job to hang, and therefore refrained from upgrading to it.

http://www.scientificlinux.org/distributions/6x/63/
http://www.mono-project.com/
http://www.mono-project.com/Release_Notes_Mono_2.10.8
http://stackoverflow.com/q/17554945/1149773
http://www.mono-project.com/Release_Notes_Mono_3.0#New_in_Mono_3.0.12
http://www.mono-project.com/Generational_GC
http://www.mono-project.com/Compiling_Mono_From_Tarball
http://www.mono-project.com/Release_Notes_Mono_3.2

80

Apart from the averages, we also calculate the standard deviation among the execution

times of the runs for each test. Standard deviation indicates the extent of the variation,

thereby imparting important insight about the performance’s consistency. Since our tests

only constitute a “sample” of runs, we use the formula for sample standard deviation,

applying Bessel’s correction. Based on this, we compute the confidence intervals for our

measured averages, assuming a Student’s -distribution and targeting a 99% confidence

level. We represent the confidence intervals graphically, using error bars, in all our charts in

Chapter 7 (below).27

27
 For definitions of these terms, refer to published literature on statistics, such as Statistics for

Experimenters: Design, Innovation, and Discovery by Box et al. [52].

81

Chapter 7: Experimental Results and Analysis

In this chapter, we present the results of the experiments through which we evaluated the

various aspects pertaining to our investigation, including the effects of task granularity,

hardware concurrency, program scalability, and multiprogramming schemes. Each

experiment is accompanied by a critical analysis that attempts to systematically explain the

causes underlying the results, as well as compare them to related work (where applicable).

7.1 Granularity

In Section 4.5.2 (p. 50), we explained the notion of granularity and its influence on the

extent of potential parallelism yielded by our D&C skeleton. In our first experiment, we

investigate the effect of this granularity on parallel performance. We run each respective

D&C program (with a fixed problem size) in isolation over all 64 cores, starting with a

granularity equal to the problem size, and halving it in each subsequent test, down to

 ⁄ (i.e.) of the problem size.

As discussed in the aforementioned section, this ratio would typically correspond to the

total number of execute muscle tasks that the D&C skeleton ends up with at the base case

of the recursion. Thus, it serves as an indicator of the potential parallelism presented by the

D&C program to the task scheduler. (In quicksort, this number is only a close approximation

due to its unbalanced split. In Strassen multiplication, the computation is more intricate:

ratios of ⁄  –  ⁄ yield 7 execution muscles; ratios of ⁄  –  ⁄ yield 49 execution

muscles; whilst ratios of ⁄ or lower yield 343 execution muscles, with ShouldSplit

explicitly overridden to stop at this limit in the case of this particular program.)

82

Figure 7.1. Execution time vs. granularity for our D&C programs, run independently over 64 cores.

A performance optimum emerges prominently towards the centre.

Figure 7.1 presents our results. Very coarse granularities expectedly suffer from poor

performances due to their curbed opportunity for parallel execution, thereby succumbing

to the consequences of Amdahl’s Law [47]. As the granularity is made finer (yielding more

parallel tasks), performances improve almost uniformly, with full machine utilization

initially achieved at a granularity ratio of ⁄ . However, this granularity generates as many

execute tasks as there are logical cores on the machine, leaving no room for compensating

against variances in their respective execution times. Consequently, the overall completion

time of the execute phase becomes bound to its slowest task.

This effect is most clearly demonstrated in the case of Monte Carlo Pi, where the

substantial variance among its tasks’ execution times (as indicated through its large error

bars) causes its performance on 64 execute tasks to be 67% slower than its best

1

2

4

8

16

32

64

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
,0

2
4

2
,0

4
8

4
,0

9
6

8
,1

9
2

1
6

,3
8

4

3
2

,7
6

8

6
5

,5
3

6

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Granularity (ratio of problem size)

Monte-Carlo-Pi

Sum-Of-Squares

Strassen-Multiply

Quick-Sort

Merge-Sort

83

performance on 1,024 tasks.28 In the case of all programs, finer granularities mitigate this

issue by creating an abundance of such tasks, allowing threads assigned faster-executing

tasks to restore balance by processing more tasks overall.

Figure 7.2. Execution time vs. granularity, showing region of best performances.

Note how the performances remain largely consistent over the wide range of granularities.

Unlike Figure 7.1, this chart’s vertical axis has a linear scale.

The most interesting outcome from this experiment, as amplified in Figure 7.2, is that the

good performances subsequently persist over a wide range of ever-finer granularities, only

starting to deteriorate at ratios of ⁄ and beyond. This result testifies to the efficiency

of task parallelism, demonstrating that it can accommodate surplus parallelism of up to 32×

the machine’s multiprocessing capabilities without experiencing any perceptible

slowdowns. By comparison, informal benchmarks show that thread oversubscription by a

factor of just 2.5× can cause a 40% slowdown for compute-bound multithreaded

applications [32].

28
 This large variance among the execute tasks of the Monte Carlo Pi program is unexpected. As

mentioned in Section 6.2 (p. 79), the cause seems to be performance deficiencies in Mono’s

implementation of its garbage collector on multiprocessing systems, despite that our Monte

Carlo Pi muscle function does not instantiate any objects on the heap during its execution.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

6
4

1
2

8

2
5

6

5
1

2

1
,0

2
4

2
,0

4
8

4
,0

9
6

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Granularity (ratio of problem size)

Monte-Carlo-Pi

Sum-Of-Squares

Strassen-Multiply

Quick-Sort

Merge-Sort

84

At granularities of ⁄ and finer, the task parallelism overheads swamp the

computation and cause performance to deteriorate, eventually reaching a point where the

parallel programs would run slower than their sequential counterparts.

On the basis of these results, we configured our system to aim for granularities that would

result in approximately 4 execute muscles per core for each program (as discussed in

Section 4.5.2, p. 51). Whilst Figure 7.2 (above) suggests that the best performances are

achieved when targeting 16 execute muscles per core (as similarly recommended by

Campbell et al. [34]), this only applies when the programs are run in isolation, leading us to

scale it down in anticipation for the multiprogramming tests.

7.2 Scalability

In our next experiment, we evaluate our parallel programs’ respective scalabilities by

measuring their speedups when executed (in isolation) over various degrees of physical

concurrency. For each program, we first measure the sequential execution time, which

involves processing the entire problem through a single ExecuteMuscle call (run on a single

core). Then, we initialize an AffinityTaskScheduler whose number of pinned threads

(over distinct contiguous cores) is gradually increased over consecutive tests, up to a

maximum of 64 (representing full utilization of our manycore machine). We measure the

parallel execution times, and obtain the speedups by calculating the factor by which they

reduce the sequential execution time (as defined in Section 2.4, p. 17).

85

Figure 7.3. Speedup vs. concurrency for our parallel programs executed over

various numbers of contiguously-allocated cores on the 64-core machine

Figure 7.3 presents the observed scalabilities, with results corroborating the predictions we

made throughout Section 4.4 (p. 41). Our Monto Carlo Pi and sum-of-squares (map–reduce)

programs exhibit near-linear speedups, achieving parallel efficiencies of 90% and 89%

(compared to the optimal) on 64 cores. Both of these programs are embarrassingly parallel,

with their split and merge operations constituted of trivial computations (such as the

summation of a small quantity of integers in the latter), thereby lending themselves to high

scalabilities. Strassen multiplication shows moderate scalability, due to the submatrix

additions that need to be performed sequentially during its split and merge operations.

Finally, quicksort and mergesort give relatively low scalabilities, due to the sequential

sweeps over the -element arrays required in their split (for quicksort) or merge (for

mergesort) operations.

The above results also permit us to evaluate the implementational efficiency of our D&C

skeleton when compared against other published results. In their investigation of

Skandium’s performance over 16 cores, Tsogkas [48] reports speedups of 6.0× for quicksort

and 4.8× for mergesort. Our counterpart D&C programs achieve speedups of 8.8× and 8.3×

respectively over the same number of cores, which constitute an improvement of 46% and

30

58

29

57

18

23

11
13

11
12

0

10

20

30

40

50

60

0 8 16 24 32 40 48 56 64

Sp
e

e
d

u
p

Concurrency (number of cores)

Optimal

Monte-Carlo-Pi

Sum-Of-Squares

Strassen-Multiply

Quick-Sort

Merge-Sort

86

71% over Tsogkas’s results. Separately, Leyton & Piquer [25] report a 3.4× speedup when

using Skandium to run parallel quicksort over 8 cores, whilst Leijen et al. [8] improve this to

5.1× using TPL (as already mentioned in Section 3.1.2, p. 24). Our corresponding speedup of

6.0× (which is 74% efficient) outperforms them by 75% and 17% respectively.29

7.2.1 Contiguous vs. Dispersed Allocation

In Section 5.1.3 (p. 57), we mentioned that contiguous core allocations could cause

memory-intensive programs to suffer performance bottlenecks due to the shared off-chip

bandwidth [51]. Therefore, we repeat our scalability experiments using a dispersed

allocation (as depicted in Figure 5.3, p. 58) in order to compare its performance.

Figure 7.4 (below) presents the speedups resulting from the two allocations for up to 16

threads. The dispersed allocation consistently outperforms the contiguous one, since the

threads can take advantage of the memory bandwidth from across all the processor chips.

The most interesting case is sum-of-squares (a map–reduce), our most memory-intensive

program, which improves its 16-thread speedup from 14.9× to 15.9× when dispersed,

overtaking Monte Carlo Pi and achieving an efficiency of 99%.

At the same time, we note that the performance improvements, albeit significant, scale

only modestly with respect to the available memory bandwidth. Even in the case of sum-of-

squares, a 4× increase in bandwidth only yielded a 7% improvement. A possible

interpretation of this result is that our programs are much more compute-bound than

memory-bound, making physical concurrency (i.e. number of cores) the dominant factor in

their performance, not memory bandwidth.

An alternate explanation revolves around the non-uniform memory access (NUMA)

architecture of our manycore machine. Since each program’s problem data is initialized

(before the test) sequentially on the main thread, it might have been allocated entirely to

the memory module associated with its processor. Consequently, any memory access

requests would still need to be handled by a single memory controller, which therefore

29
 These comparisons are subject to undiscussed experimental variations, such as problem sizes,

and therefore do not fulfil the ceteris paribus assumption that would be expected of a proper

scientific investigation. For this reason, these comparisons should be taken as merely informal

observations.

87

becomes a performance bottleneck cancelling the benefits of the increased overall memory

bandwidth.

Figure 7.4. Speedup vs. concurrency for contiguous vs. dispersed allocation

of pinned threads over cores of the 64-core machine

7.6

15.2

7.5

14.9

6.8

11.6

6.0

8.8

5.6

8.3

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Sp
e

e
d

u
p

Concurrency (number of cores)

Contiguous Allocation

Optimal

Monte-Carlo-Pi

Sum-Of-Squares

Strassen-Multiply

Quick-Sort

Merge-Sort

7.9

15.8

8.0

15.9

7.0

12.0

6.2

9.0

5.8

8.5

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Sp
e

e
d

u
p

Concurrency (number of cores)

Dispersed Allocation

Optimal

Monte-Carlo-Pi

Sum-Of-Squares

Strassen-Multiply

Quick-Sort

Merge-Sort

88

7.3 D&C Phases

Sasaki et al. [13] evaluate their parallel programs’ scalabilities empirically, relying on

instrumentation to measure their progress through cumulative retired instructions, but

treating their underlying algorithmic structure as a black box. This limits the opportunity for

interpreting results analytically. Given that we are investigating a specific class of parallel

programs – namely, divide-and-conquer – we endeavoured to delve deeper and study the

performance characteristics of our applications as they traverse the D&C recursion graph.

To this end, we introduced execution hooks into our D&C skeleton so that our system could

transparently collect statistics about the individual execution times of the split, execute,

and merge functions.

Figure 7.5 (below) presents each phase’s cumulative execution time (as summed across all

tasks) for each program respectively. Again, the results corroborate our predictions from

Section 4.4 (p. 41). Monte Carlo Pi, sum-of-squares, and mergesort keep splitting (with a

branching factor of 2) until Level 8, switching to their execute phase at Level 9 (with 256

execute tasks, being). Quicksort, on the other hand, transitions from its split to its

execute phase gradually along Levels 8–11. As explained in Section 4.5.2 (p. 50), its

unbalanced splits cause some recursion paths to produce subproblems with sizes meeting

the target granularity earlier than others. Finally, Strassen multiplication (with a branching

factor of 7) switches to the execution phase at Level 4 (where it would have 343 execution

tasks, being).

Monte Carlo Pi and sum-of-squares incur negligible computation in their split and merge

phases, taking at most 3 ms and 29 ms for their Level 8 merge (involving the summation of

128 pairs of integers); over 99.9% of their time is spent in the execute phase. Strassen

multiplication incurs considerable computation in both its split and its merge phases,

constituting 14% and 3% of its overall time respectively. However, 87% of its split phase is

spent at Level 3, where it would already have 49-way parallelism (through split tasks),

thereby mitigating its effect on scalability.

89

Figure 7.5. Cumulative execution times of tasks in each D&C phase.

The vertical axes are logarithmic so as to allow small values to be visible.

0.001

0.01

0.1

1

1 2 3 4 5 6 7 8 9 10 11

Fr
ac

ti
o

n
 o

f
O

ve
ra

ll
Ex

e
cu

ti
o

n
 T

im
e

Recursion Level

Split

Monte-Carlo-Pi

Sum-Of-Squares

Strassen-Multiply

Quick-Sort

Merge-Sort

0.001

0.01

0.1

1

1 2 3 4 5 6 7 8 9 10 11

Fr
ac

ti
o

n
 o

f
O

ve
ra

ll
Ex

e
cu

ti
o

n
 T

im
e

Recursion Level

Execute

Monte-Carlo-Pi

Sum-Of-Squares

Strassen-Multiply

Quick-Sort

Merge-Sort

0.001

0.01

0.1

1

1 2 3 4 5 6 7 8 9 10 11

Fr
ac

ti
o

n
 o

f
O

ve
ra

ll
Ex

e
cu

ti
o

n
 T

im
e

Recursion Level

Merge

Monte-Carlo-Pi

Sum-Of-Squares

Strassen-Multiply

Quick-Sort

Merge-Sort

90

Finally, quicksort and mergesort incur substantial computation in their split and merge

phases respectively, constituting 31% and 25% of their overall times. In their case, this

computation is spread out more or less evenly across all their levels, since each level entails

a fresh sweep over the entire array of elements (albeit divided among varying numbers of

parallel tasks). Quicksort’s split noticeably starts to taper off in the final levels, as some

recursion paths would have transitioned to the execute phase.

7.4 Symmetric Tests

As a precursor to our multiprogramming tests, we ran some experiments to evaluate how

our parallel programs would individually fare in a multiprogrammed context. In each

symmetric test, we initialize a workload of 8 instances of the same given program

(initialized with different random problems), and measure their execution times when run

concurrently, over 64 cores, under the various multiprogramming schemes described in

Section 5.2 (p. 58) and Section 5.3 (p. 64).

Figure 7.6. MNTT for symmetric tests involving 8 instances of the same program executed

concurrently over 64 cores (lower is better). Under most multiprogramming schemes,

low-scalability programs perform better than high-scalability ones.

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

M
ax

im
u

m
 N

o
rm

al
iz

e
d

 T
u

rn
ar

o
u

n
d

 T
im

e
 (

M
N

TT
)

Multiprogramming Scheme

Monte-Carlo-Pi

Sum-Of-Squares

Strassen-Multiply

Quick-Sort

Merge-Sort

91

Figure 7.6 (above) reveals some interesting trends. In general, the normalized performance

of the low-scalability programs is drastically better than that of the high-scalability

programs when run under an 8-instance workload. Under most schemes, quicksort and

mergesort exhibit an MNTT of 2–3, whilst Monte Carlo Pi and sum-of-squares often have an

MNTT of 7–8, which is only slightly better than if the 8 instances were to be executed

consecutively in isolation.

This result is intuitive. High-scalability programs, by definition, can make efficient utilization

of any number of cores they are assigned, leaving little opportunity for improvement

through scaling down. On the other hand, low-scalability programs exhibit diminishing

returns over larger numbers of cores; thus, when their effective concurrency is implicitly

reduced due to contention with other program instances, their efficiencies would

substantially improve.

There is a large performance difference between the two thread-oversubscription schemes.

Despite both causing an average oversubscription of 8 threads per core, the free scheme –

which leaves the operating system’s thread scheduler at liberty to distribute the threads

among the cores – outperforms the pinned scheme by 20–30% for the three high-

scalability programs, and by around 65% for the low-scalability ones. This demonstrates

that the thread scheduler performs an adequate job at boosting performance through

thread migration.

Note that, in the measurements reported for our statically- or dynamically-partitioning

multiprogram scheduler in this and subsequent tests, we do not include the execution time

it required for initially measuring each program’s scalability (per the procedure described in

Section 5.3.2, p. 67). We feel that this omission is justified, since the said overhead is

conceptually analogous to a compile-time (rather than run-time) cost. Once the scalability

for a particular D&C program has been measured over a representative problem, it may be

reused indefinitely for processing similar problems (through the same program), thereby

amortizing its cost.

92

Figure 7.7. MNTT for symmetric tests of low-scalability programs.

Static partitioning achieves the best performance by a small margin.

Finally, Figure 7.7 considers the performances of just the two low-scalability programs, and

shows that our statically-partitioned scheduler has the potential to outperform all other

schemes (albeit not by a statistically-significant margin). In this case, since each workload

consists of instances of the same program, the partitioning would be egalitarian (with each

instance receiving an equal number of cores).

7.5 Cyclic Tests

The main experiments of our project involve running cyclic tests, as described in

Section 5.4.1 (p. 76).

7.5.1 Full Program Suite

Initially, we run our cyclic tests over multiprogram workloads comprising all our five parallel

programs. The cyclic tests differ from the symmetric tests of the previous section in that

they only run a single instance of each program, but mix the different programs into the

same workload, and execute them repeatedly for a total time interval of 8 minutes (chosen

empirically such that each program would get to run around 100 times in each test).

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

M
ax

im
u

m
 N

o
rm

al
iz

e
d

 T
u

rn
ar

o
u

n
d

 T
im

e

(M
N

TT
)

Multiprogramming Scheme

Quick-Sort

Merge-Sort

93

Figure 7.8. NTTs of our 5-program workload (lower is better).

Shared-scheduler schemes favour low-scalability programs and suffer the

worst variances. All other schemes favour high-scalability programs.

Figure 7.9. NPs of our 5-program workload (higher is better)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

N
o

rm
al

iz
e

d
 T

u
rn

ar
o

u
n

d
 T

im
e

 (
N

TT
)

Multiprogramming Scheme

Monte-Carlo-Pi

Sum-Of-Squares

Strassen-Multiply

Quick-Sort

Merge-Sort

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
o

rm
al

iz
e

d
 P

ro
ge

ss
 (

N
P

)

Multiprogramming Scheme

Monte-Carlo-Pi

Sum-Of-Squares

Strassen-Multiply

Quick-Sort

Merge-Sort

94

Figure 7.8 and Figure 7.9 (above) present the NTTs and NPs of our respective programs

under this multiprogram workload. In the thread-oversubscription schemes, as well as our

processor-partitioning schemes, higher-scalability programs perform better than lower-

scalability ones. However, the trend is completely reversed in the shared-scheduler

schemes (which include the default scheduler), where the low-scalability programs perform

best.

Another interesting observation pertains to the variances among consecutive runs of the

same program under the various schemes, as depicted through the error bars. Shared-

scheduler schemes incur the worst variances, with the relative standard deviations (RSD) of

the various programs’ NTTs averaging 38%. This is reduced to 18% in the thread-

oversubscription schemes, 13% in our dynamically-repartitioning scheme, and merely 7%

in our statically-partitioned scheme.

This result can be explained through a number of factors. Shared-scheduler schemes suffer

from inherently volatile performances, since minor timing fluctuations during the execution

of the task scheduler’s work-stealing logic can lead to large differences in the overall task

assignment among threads. Oversubscription schemes benefit from the thread scheduler’s

goal of promoting fairness. Finally, processor partitioning ensures that each program has its

own unique set of processors, making its performance much more deterministic. Dynamic

repartitioning introduces some unpredictability, but only insofar as there is an insufficiency

of available tasks in some programs.

95

Figure 7.10. ANTT of our 5-program workload (lower is better).

Best system-level performance is achieved by the shared-scheduler schemes.

Figure 7.11. STP of our 5-program workload (higher is better)

2.77

3.14

2.59
2.70

3.08

2.91

1.0

1.5

2.0

2.5

3.0

3.5

A
ve

ra
ge

 N
o

rm
al

iz
e

d
 T

u
rn

ar
o

u
n

d
 T

im
e

 (
A

N
TT

)

Multiprogramming Scheme

1.83

1.65

2.29

2.15

1.63

1.73

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Sy
st

e
m

 T
h

ro
u

gh
p

u
t

(S
TP

)

Multiprogramming Scheme

96

Figure 7.10 and Figure 7.11 present the system-level metrics for our 5-program workload.

The best performance is given by the shared-scheduler schemes, in which our

AffinityTaskScheduler outperforms the default scheduler by 6% in terms of STP. The

thread-oversubscription scheme with free threads is 10% faster than the one which pins

them, again showing that the operating system’s thread scheduler makes beneficial

decisions on thread migration. Notwithstanding, the free oversubscription scheme is still

20% slower than the shared scheduler, which is strong evidence that work-stealing task

scheduling can significantly outperform the thread scheduler for compute-intensive

programs. Our dynamically-repartitioning scheduler is 6% faster than when statically

partitioned. However, it is 24% slower than the shared scheduler, thereby seemingly

rebutting our hypothesis.

7.5.2 Low- to Moderate-Scalability Subset

Sasaki et al. [13], citing Bhadauria & McKee [53], observe that:

“Minimizing ANTT means that all the programs are fairly achieving high

performance compared to its peak performance (achievable only when

occupying the whole system by itself). Therefore, programs that scale almost

linearly […] are removed from the [multiprogram coscheduler] and run in

isolation, or gang-scheduling.” — Sasaki et al. [13]

On this basis, we altered our experiment to remove the highly-scalable programs (Monte

Carlo Pi and sum-of-squares), and rerun the cyclic tests with just the moderate- and low-

scalability ones (Strassen multiplication, quicksort, and mergesort).

97

Figure 7.12. NTTs of our 3-program workload (lower is better)

Figure 7.13. NPs of our 3-program workload (higher is better)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

N
o

rm
al

iz
e

d
 T

u
rn

ar
o

u
n

d
 T

im
e

 (
N

TT
)

Multiprogramming Scheme

Strassen-Multiply

Quick-Sort

Merge-Sort

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
o

rm
al

iz
e

d
 P

ro
ge

ss
 (

N
P

)

Multiprogramming Scheme

Strassen-Multiply

Quick-Sort

Merge-Sort

98

Figure 7.14. ANTT of our 3-program workload (lower is better).

Best system-level performance is now achieved by our repartitioning multiprogram scheduler.

Figure 7.15. STP of our 3-program workload (higher is better)

1.30

1.65

1.31

1.36

1.54

1.27

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

A
ve

ra
ge

 N
o

rm
al

iz
e

d
 T

u
rn

ar
o

u
n

d
 T

im
e

 (
A

N
TT

)

Multiprogramming Scheme

2.32

1.85

2.32
2.25

1.95

2.37

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Sy
st

e
m

 T
h

ro
u

gh
p

u
t

(S
TP

)

Multiprogramming Scheme

99

Figure 7.12 to Figure 7.15 (above) present the results of this workload involving just

moderately- and poorly-scalable programs. In this case, our repartitioning scheduler does

achieve the best performance from among all multiprogramming schemes, outperforming

the default scheduler by a solid 5½% in terms of STP, thereby confirming our hypothesis

that scalability-based partitioning can be beneficial for task-parallel programs. Meanwhile,

its performance also constitutes a 2% improvement over both the shared scheduler and

the free oversubscription scheme, with the result being statistically significant at 99%

confidence (when averaged over 21 runs).

7.5.3 Comparison with Related Work

One of our initial goals was to reproduce the results obtained by Sasaki et al. [13], but

applied to task-parallel programs. Our experiments are most directly comparable to the

results presented in Section 5.2 of their paper, where they investigate the performance of

their scalability-based manycore partitioning (SBMP) scheduler, with phase prediction

enabled, on multiprogram workloads involving parallel programs with multiple phases.

Their phase prediction capability plays a role quite similar to our task-availability-based

repartitioning (discussed in Section 5.3.4, p. 72).30 Their SBMP scheduler “significantly

outperforms” the Linux thread scheduler by 6% in terms of ANTT.

Our repartitioning scheduler, on the other hand, only outperforms the Linux thread

scheduler (as leveraged within the free oversubscription scheme) by 2.6% in ANTT. There

are several factors that could account for this shortcoming. Due to the efficiency of our

D&C skeleton’s asynchronous execution, all our programs exhibit relatively clean

scalabilities, with speedups continuing to increase monotonically up to 64 cores (as shown

in Figure 7.3, p. 85). This is not the case for the PARSEC benchmark used by Sasaki et

al. [13], several of whose programs suffer from erratic scalabilities (see Figure 7.16 below),

particularly within the “Yellow” and “Red” groups, which are the focus of their SBMP

scheduler. This poor performance of the benchmark programs affords the SBMP scheduler

more room for their improvement.

30
 The core donation technique suggested by Sasaki et al. [13] is not relevant to our experiments,

since it is intended for applications exhibiting “low CPU utilization”.

100

Figure 7.16. Scalabilities of PARSEC benchmarks. Copied from Sasaki et al. [13].

Furthermore, given that our D&C skeleton is implemented to use task parallelism rather

than explicit threading, all our tests run on top of a work-stealing task scheduler. This

includes the free oversubscription scheme that we have adopted as our baseline, which

simply initializes such a scheduler (with a full contingent of threads) for each program in the

workload. The performance benefits of work-stealing task schedulers (discussed in

Section 3.1.2, p. 22) are well-established, both in research and in industry [7], [8], [46].

(For example, Tsogkas [48] observed that a task-parallel mergesort could outperform an

explicitly-threaded one by 45% on 16 cores.31) Thus, it is reasonable to assume that this

work-stealing logic reaps most of the benefits to be had from cache reuse (due to the data

locality arising from its LIFO pushing/popping) and dynamic load-balancing (from its FIFO

work-stealing), leaving us limited opportunity for further improvement. Sasaki et al. [13], on

the other hand, use explicitly-threaded applications [54], which are likely to be more

amenable to performance boosts from improved data locality.

Several of our programs – particularly, sum-of-squares, quicksort, and mergesort – work on

sample problems that have large memory footprints (256 or 512 MB). Since they would be

continuously scanning arrays at least an order of magnitude larger than the processor

caches, their working sets are transient, making them unlikely to enjoy significant benefits

from the cache reuse promoted by processor partitioning.

31
 For their task-parallel tests, Tsogkas used the Skandium library, whose task scheduler uses a

centralized queue, meaning that even better results might have been possible through

work-stealing.

101

Finally, our system was built on the high-level programming platform presented by the

.NET Framework, and therefore needs to run on Mono when tested on our Linux-based

manycore machine. This introduces overheads and unpredictability due to the mechanisms

supporting the higher level of abstraction, including the garbage collector, which can kick in

and temporarily stall the system at arbitrary points in time. The PARSEC benchmark suite,

being written in C/C++ [54], can largely avoid these issues.

102

Chapter 8: Conclusion

To close off our dissertation, we shall recapitulate the main achievements of our project.

We then present a number of potential improvements and future work for our system, and

conclude with some final remarks.

8.1 Achievements

By architecting a fresh implementation of the divide-and-conquer skeleton atop the task

infrastructure of the Task Parallel Library (TPL) in the .NET Framework, we have

demonstrated the design benefits of layered parallel abstractions (Section 2.2, p. 9).

In particular, this layering permits our skeleton to implicitly reap the performance gains of

the separately-developed work-stealing task scheduler. By contrast, Skandium adopts a

stovepipe approach, whereby it implements its own task-scheduling logic using a

centralized queue [25], enabling our implementation to outperform it by 75%.32

By optimizing our D&C skeleton to use asynchronous parallelism (Section 4.2.2, p. 35), we

effectively eliminated almost all instances of blocking from our system. The skeleton uses

an atomic decrement (rather than a blocking primitive) to identify when to spawn the

merge tasks. The programs themselves do not use any explicit synchronization at all, relying

on the skeleton to direct their entire execution flow. This execution efficiency has given us a

17% improvement over traditional fork–join implementations for divide-and-conquer

algorithms on TPL [8].

Our combination of structured parallelism (offered by the D&C skeleton) with functional-

style programming (through C# lambda expressions and LINQ) engendered a declarative

programming model whose expressive power was demonstrated through our succinct 8-

line parallel quicksort implementation (Section 4.1.4, p. 31).

Through our comparison of multiprogramming schemes, we have established that sharing a

single work-stealing task scheduler among all concurrent programs (and thereby

32
 As has been already mentioned on p. 86, the comparisons in this section do not account for

experimental variations, such as problem sizes, and should only be treated as casual

observations.

103

eliminating thread oversubscription altogether) can outperform the Linux thread scheduler

by 25% for multiprogram workloads containing variable scalabilities (Section 7.5.1, p. 92).

Our main achievement lies in our novel multiprogram scheduler, which unifies the designs

of work-stealing task-scheduling and scalability-based processor-partitioning into a single

component that can draw on the performance benefits of both (Section 5.3, p. 64). This

scheduler has been engineered to work for any arbitrary multiprogram workload, including

unseen programs (other than the five we have considered). However, it is best-suited for

workloads comprised of low- to moderate-scalability programs, where it has been shown to

outperform the TPL default task scheduler by 5½%, and the Linux thread scheduler by 2%

(Section 7.5.2, p. 96).

8.2 Potential Improvements and Future Work

The most significant shortcoming of our scalability-based processor-partitioning technique

is the simplified manner in which it evaluates scalability (Section 5.3.2, p. 66). Whilst this

was, to an extent, acceptable for our suite of cleanly-scalable programs, it would give rise

to issues if employed over programs exhibiting erratic scalabilities, such as the PARSEC

benchmark (Figure 7.16, p. 100). Therefore, our partitioning strategy should be upgraded to

use a hill-climbing heuristic over a populated scalability table, as is done by Sasaki et

al. [13].

High-performance computing on manycore machines would inevitably benefit when the

software developers align their systems according to the physical characteristics of the

underlying hardware platform. For example, Sasaki et al. [13], running their experiments on

a 48-core machine comprised of eight 6-core processor dies, restricted their scheduler to

use the said 6-core die “as a minimum unit of allocation to programs” [13]. Since our

manycore consisted of just four 16-core processor chips, we could not afford to impose

such a chip-level restriction; however, this left us susceptible to negative interference

among programs executing on cores belonging to the same chip. If our scheduler were to

be run on a manycore machine that has a finer distribution of cores, then it should be

modified to perform such alignment along processor chip boundaries.

A design limitation concerns the rigidity of the D&C skeleton. When developing the Strassen

matrix multiplication program (Section 4.4.3, p. 45), we found that the skeleton’s interface

104

did not allow us to parallelize the submatrix additions (specified within the –

computations) as part of the spawned subtasks; rather, these had to be performed

sequentially within the parent split operation. This restriction caused a performance

penalty, with the split phase accounting for 14% of the program’s overall execution time

(Section 7.3, p. 88). By extending the skeleton’s interface to permit multiple definitions of

the recursive case (in this case, one for the first level, and one for all subsequent levels), the

issue could have been avoided.

In Section 4.5.3 (p. 53), we presented the reasons why we did not employ nested

parallelism in our skeletal designs. In production scenarios, it would obviously be desirable

to maximize machine utilization at all levels of the recursion, by parallelizing the split

and/or merge operations as well, as depicted in Figure 8.1 (below).

Figure 8.1. Nested parallelism attained by embedding sub-skeletons within the split and merge

operations of the top-level D&C skeleton. Using this approach, full concurrency may be

achieved at all levels of the recursion.

Nested parallelism may be achieved by: replacing the split and/or merge muscles with

nested sub-skeletons [25] (typically of other skeleton types, such as map–reduce);

105

developing “fused” skeletons that support this composite parallelism natively [31]; or

introducing ad hoc parallelism at the program level [35] (such as through explicitly-spawned

subtasks).

8.3 Closing Remarks

At its core, the design of this project was an exercise in architectural layering through

structured parallelism. We principally worked at three layers: the task scheduler (for

distributing tasks onto processors), the D&C skeleton evaluator (for generating task

graphs), and the actual program instances (for expressing the problem-domain logic). One

of the outcomes that struck us during this experience was the ease and confidence with

which extensive changes could be applied to the components of a given layer without

affecting the other layers, despite their close interdependence for the run-time execution.

The object-oriented programming (OOP) paradigm that currently pervades the software

industry encourages applications to be designed using a functional layering that is often

orthogonal to parallelism. Any necessary parallelization would typically be bolted-on late in

the development process, giving rise to “spaghetti code”–like behaviour, with threads

darting sporadically across different objects. This often breaks the notion of encapsulation,

since any threading issues that need to be debugged (such as deadlocks) would require the

developer to trace the threads’ entire flow across the otherwise-unrelated classes.

Through this project, we have demonstrated that layered parallelism can serve not only as

an adequate multi-level abstraction for aiding software developers writing parallel

programs, but also as a rich source of structural information for transparently boosting the

system’s parallel performance.

106

Bibliography

[1] H. Sutter, ‘The free lunch is over: A fundamental turn toward concurrency in

software’, Dr. Dobb’s Journal, vol. 30, no. 3, pp. 202–210, 2005.

[2] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan, D.

Patterson, K. Sen, and J. Wawrzynek, ‘A view of the parallel computing landscape’,

Communications of the ACM, vol. 52, no. 10, pp. 56–67, 2009.

[3] B. Catanzaro, A. Fox, K. Keutzer, D. Patterson, B.-Y. Su, M. Snir, K. Olukotun, P.

Hanrahan, and H. Chafi, ‘Ubiquitous parallel computing from Berkeley, Illinois, and

Stanford’, IEEE Micro, vol. 30, no. 2, pp. 41–55, Apr. 2010.

[4] H. Sutter and J. Larus, ‘Software and the concurrency revolution’, Queue, vol. 3, no. 7,

pp. 54–62, 2005.

[5] E. A. Lee, ‘The problem with threads’, Computer, vol. 39, no. 5, pp. 33–42, 2006.

[6] T. Willhalm and N. Popovici, ‘Putting Intel Threading Building Blocks to work’, in

Proceedings of the 1st International Workshop on Multicore Software Engineering,

2008, pp. 3–4.

[7] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel, P.

Unnikrishnan, and G. Zhang, ‘The design of OpenMP tasks’, IEEE Transactions on

Parallel and Distributed Systems, vol. 20, no. 3, pp. 404–418, 2009.

[8] D. Leijen, W. Schulte, and S. Burckhardt, ‘The design of a task parallel library’, in

Proceedings of the 24th ACM SIGPLAN conference on Object oriented programming

systems languages and applications, New York, NY, USA, 2009, pp. 227–242.

[9] S. Borkar, ‘Thousand core chips: a technology perspective’, in Proceedings of the 44th

annual Design Automation Conference, New York, NY, USA, 2007, pp. 746–749.

[10] A. Heinecke, M. Klemm, and H.-J. Bungartz, ‘From GPGPU to Many-Core: Nvidia Fermi

and Intel Many Integrated Core Architecture’, Computing in Science Engineering, vol.

14, no. 2, pp. 78–83, 2012.

[11] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson, N.

Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P. Salihundam, V.

Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K.

Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van der Wijngaart, and T.

Mattson, ‘A 48-Core IA-32 message-passing processor with DVFS in 45nm CMOS’, in

Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE

International, 2010, pp. 108–109.

[12] E. Frachtenberg and Y. Etsion, ‘Hardware parallelism: Are operating systems ready?

(Case studies in mis-scheduling)’, in Proceedings of Workshop on the Interaction

between Operating Systems and Computer Architecture (WIOSCA’06), 2006.

107

[13] H. Sasaki, T. Tanimoto, K. Inoue, and H. Nakamura, ‘Scalability-based manycore

partitioning’, in Proceedings of the 21st international conference on Parallel

architectures and compilation techniques, New York, NY, USA, 2012, pp. 107–116.

[14] M. K. Emani, Z. Wang, and M. F. P. O’Boyle, ‘Smart, adaptive mapping of parallelism in

the presence of external workload’, presented at the 2013 International Symposium

on Code Generation and Optimization (CGO ’13), 2013.

[15] M. Rajagopalan, B. T. Lewis, and T. A. Anderson, ‘Thread scheduling for multi-core

platforms’, in Proceedings of the 11th USENIX workshop on Hot topics in operating

systems (HOTOS ’07), 2007.

[16] G. Moore, ‘Cramming more components onto integrated circuits’, Electronics, vol. 38,

no. 8, pp. 114–117, Apr. 1965.

[17] K. Olukotun and L. Hammond, ‘The future of microprocessors’, Queue, vol. 3, no. 7,

pp. 26–29, 2005.

[18] M. J. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. I. August, ‘Revisiting the

sequential programming model for multi-core’, in 40th Annual IEEE/ACM

International Symposium on Microarchitecture, 2007 (MICRO 2007), 2007, pp. 69–84.

[19] M. Flynn and P. Hung, ‘Microprocessor design issues: thoughts on the road ahead’,

IEEE Micro, vol. 25, no. 3, pp. 16–31, 2005.

[20] L. Hammond, B. A. Nayfeh, and K. Olukotun, ‘A single-chip multiprocessor’, Computer,

vol. 30, no. 9, pp. 79–85, 1997.

[21] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger, ‘Clock rate versus IPC: The

end of the road for conventional microarchitectures’, ACM SIGARCH Computer

Architecture News, vol. 28, no. 2, pp. 248–259, 2000.

[22] A. C. Sodan, J. Machina, A. Deshmeh, K. Macnaughton, and B. Esbaugh, ‘Parallelism

via multithreaded and multicore CPUs’, Computer, vol. 43, no. 3, pp. 24 –32, Mar.

2010.

[23] D. Koufaty and D. T. Marr, ‘Hyperthreading technology in the NetBurst

microarchitecture’, IEEE Micro, vol. 23, no. 2, pp. 56–65, 2003.

[24] D. Burger and J. R. Goodman, ‘Billion-transistor architectures’, Computer, vol. 30, no.

9, pp. 46–48, 1997.

[25] M. Leyton and J. M. Piquer, ‘Skandium: Multi-core programming with algorithmic

skeletons’, in 2010 18th Euromicro International Conference on Parallel, Distributed

and Network-Based Processing (PDP), 2010, pp. 289–296.

[26] S. Okur and D. Dig, ‘How do developers use parallel libraries?’, in Proceedings of the

ACM SIGSOFT 20th International Symposium on the Foundations of Software

Engineering, New York, NY, USA, 2012, pp. 54:1–54:11.

[27] M. Cole, Algorithmic Skeletons: Structured Management of Parallel Computation.

Cambridge, MA, USA: MIT Press, 1991.

108

[28] L. F. Bic and A. C. Shaw, ‘Chapter 5: Process and thread scheduling’, in Operating

Systems Principles, 1st ed., Prentice Hall, 2002.

[29] L. Dagum and R. Menon, ‘OpenMP: an industry standard API for shared-memory

programming’, IEEE Computational Science Engineering, vol. 5, no. 1, pp. 46–55, Mar.

1998.

[30] E. W. Dijkstra, ‘Go to statement considered harmful’, Communications of the ACM,

vol. 11, no. 3, pp. 147–148, 1968.

[31] M. D. McCool, ‘Structured parallel programming with deterministic patterns’, in

Proceedings of the 2nd USENIX Conference on Hot Topics in Parallelism, Berkeley, CA,

USA, 2010.

[32] J. Rapp, ‘Oversubscription: a classic parallel performance problem’, MSDN Blogs.

[Online]. Available:

http://blogs.msdn.com/b/visualizeparallel/archive/2009/12/01/oversubscription-a-

classic-parallel-performance-problem.aspx. [Accessed: 14-Aug-2013].

[33] Y. Ling, T. Mullen, and X. Lin, ‘Analysis of optimal thread pool size’, SIGOPS Operating

Systems Review, vol. 34, no. 2, pp. 42–55, Apr. 2000.

[34] C. Campbell, R. Johnson, A. Miller, and S. Toub, Parallel Programming with Microsoft

.NET: Design Patterns for Decomposition and Coordination on Multicore Architectures.

Redmond: Microsoft Press, 2010.

[35] M. Cole, ‘Bringing skeletons out of the closet: A pragmatic manifesto for skeletal

parallel programming’, Parallel Computing, vol. 30, no. 3, pp. 389–406, Mar. 2004.

[36] E. Ayguadé, B. Blainey, A. Duran, J. Labarta, F. Martínez, X. Martorell, and R. Silvera, ‘Is

the “schedule” clause really necessary in OpenMP?’, in OpenMP Shared Memory

Parallel Programming, M. J. Voss, Ed. Springer Berlin Heidelberg, 2003, pp. 147–159.

[37] H. González-Vélez and M. Leyton, ‘A survey of algorithmic skeleton frameworks: High-

level structured parallel programming enablers’, Software: Practice and Experience,

vol. 40, no. 12, pp. 1135–1160, Nov. 2010.

[38] F. M. David, J. C. Carlyle, and R. H. Campbell, ‘Context switch overheads for Linux on

ARM platforms’, in Proceedings of the 2007 workshop on Experimental computer

science, New York, NY, USA, 2007.

[39] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki, G. E. Blelloch, B. Falsafi,

L. Fix, N. Hardavellas, T. C. Mowry, and C. Wilkerson, ‘Scheduling threads for

constructive cache sharing on CMPs’, in Proceedings of the nineteenth annual ACM

symposium on Parallel algorithms and architectures, New York, NY, USA, 2007, pp.

105–115.

[40] M. Crovella, P. Das, C. Dubnicki, T. LeBlanc, and E. Markatos, ‘Multiprogramming on

multiprocessors’, in Proceedings of the Third IEEE Symposium on Parallel and

Distributed Processing, 1991, 1991, pp. 590–597.

109

[41] S. Eyerman and L. Eeckhout, ‘System-level performance metrics for multiprogram

workloads’, IEEE Micro, vol. 28, no. 3, pp. 42–53, May 2008.

[42] V. Donaldson, F. Berman, and R. Paturi, ‘Program speedup in a heterogeneous

computing network’, Journal of Parallel and Distributed Computing, vol. 21, no. 3, pp.

316–322, Jun. 1994.

[43] D. L. Eager, J. Zahorjan, and E. D. Lazowska, ‘Speedup versus efficiency in parallel

systems’, IEEE Transactions on Computers, vol. 38, no. 3, pp. 408–423, 1989.

[44] S. R. Sarangi, B. Greskamp, and J. Torrellas, ‘CADRE: Cycle-accurate deterministic

replay for hardware debugging’, in International Conference on Dependable Systems

and Networks, 2006 (DSN 2006), 2006, pp. 301–312.

[45] D. Skinner and W. Kramer, ‘Understanding the causes of performance variability in

HPC workloads’, in Proceedings of the IEEE International Workload Characterization

Symposium, 2005, 2005, pp. 137–149.

[46] W. Kim and M. Voss, ‘Multicore desktop programming with Intel Threading Building

Blocks’, IEEE Software, vol. 28, no. 1, pp. 23–31, 2011.

[47] G. M. Amdahl, ‘Validity of the single processor approach to achieving large scale

computing capabilities’, in Proceedings of the April 18-20, 1967, Spring Joint Computer

Conference, New York, NY, USA, 1967, pp. 483–485.

[48] P. Tsogkas, ‘Evaluating Skandium’s Divide-and-Conquer Skeleton’, University of

Edinburgh, Edinburgh, 2010.

[49] V. Strassen, ‘Gaussian elimination is not optimal’, Numerische Mathematik, vol. 13,

no. 4, pp. 354–356, Aug. 1969.

[50] C. A. R. Hoare, ‘Quicksort’, The Computer Journal, vol. 5, no. 1, pp. 10–16, Jan. 1962.

[51] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin, ‘Scaling the

bandwidth wall: challenges in and avenues for CMP scaling’, ACM SIGARCH Computer

Architecture News, vol. 37, no. 3, pp. 371–382, 2009.

[52] G. E. P. Box, J. S. Hunter, and W. G. Hunter, Statistics for Experimenters: Design,

Innovation, and Discovery. Wiley-Interscience, 2005.

[53] M. Bhadauria and S. A. McKee, ‘An approach to resource-aware co-scheduling for

CMPs’, in Proceedings of the 24th ACM International Conference on Supercomputing,

New York, NY, USA, 2010, pp. 189–199.

[54] C. Bienia and K. Li, Benchmarking Modern Multiprocessors. Princeton University,

2011.

	Chapter 1: Introduction
	1.1 Aim
	1.2 Hypothesis
	1.3 Contributions
	1.4 Common Symbols
	1.5 Document Structure
	1.5.1 Submission Details

	Chapter 2: Background
	2.1 The Concurrency Revolution
	2.2 Parallel Abstractions
	2.2.1 Threaded Programming
	2.2.2 Task Parallelism
	2.2.3 Structured Parallelism
	2.2.4 Divide-and-Conquer Skeleton

	2.3 Thread Scheduling
	2.3.1 Processor Partitioning
	2.3.2 Program Scalability

	2.4 Performance Metrics
	2.4.1 Turnaround Time
	2.4.2 Throughput
	2.4.3 Variability

	2.5 Parallel Programming in .NET Framework

	Chapter 3: Related Work
	3.1 Task Schedulers
	3.1.1 Skandium
	3.1.2 Task Parallel Library
	3.1.3 Work-Stealing Task Scheduler

	3.2 Partitioning Schedulers

	Chapter 4: Skeleton Designs
	4.1 Divide-and-Conquer Skeleton
	4.1.1 Functional Parameterization
	4.1.2 Execution Interface
	4.1.3 Scheduling Extensibility
	4.1.4 Declarative Model
	4.1.5 Object-Oriented Model

	4.2 Task Generation
	4.2.1 Fork–Join Pattern
	4.2.2 Asynchronous Execution

	4.3 Program Hierarchy
	4.4 Sample Programs
	4.4.1 Sum of Squares
	4.4.2 Monte Carlo Pi
	4.4.3 Strassen Matrix Multiplication
	4.4.4 Quicksort
	4.4.5 Mergesort

	4.5 Common Design Considerations
	4.5.1 Program Reinitialization
	4.5.2 Granularity
	4.5.3 Nested Parallelism

	Chapter 5: Scheduler Designs
	5.1 Scheduler Hierarchy
	5.1.1 Free Task Scheduler
	5.1.2 Affinity Task Scheduler
	5.1.3 Contiguous vs. Dispersed Allocation

	5.2 Multiprogramming Schemes
	5.2.1 Oversubscribed Free Multiprogramming
	5.2.2 Oversubscribed Pinned Multiprogramming
	5.2.3 Shared-Scheduler Multiprogramming
	5.2.4 Default-Scheduler Multiprogramming

	5.3 Multiprogramming Task Schedulers
	5.3.1 Scheduler Partitioning
	5.3.2 Scalability-Based Partitioning
	5.3.3 Dynamic Repartitioning
	5.3.4 Task-Availability-Based Repartitioning

	5.4 Multiprogramming Test Strategies
	5.4.1 Cyclic Tests

	Chapter 6: Experimental Setup
	6.1 Hardware Platform
	6.2 Software Platform
	6.3 Statistical Methods

	Chapter 7: Experimental Results and Analysis
	7.1 Granularity
	7.2 Scalability
	7.2.1 Contiguous vs. Dispersed Allocation

	7.3 D&C Phases
	7.4 Symmetric Tests
	7.5 Cyclic Tests
	7.5.1 Full Program Suite
	7.5.2 Low- to Moderate-Scalability Subset
	7.5.3 Comparison with Related Work

	Chapter 8: Conclusion
	8.1 Achievements
	8.2 Potential Improvements and Future Work
	8.3 Closing Remarks

	Bibliography

