
 
 

 

 

 

 

 

 

Scheduling Task-Parallel  

Programs in a Multiprogram  

Workload 

  

Karl Fenech 

 

 Supervisors:  Murray Cole 

  Christian Fensch 
 

 

 

MSc Computer Science 

School of Informatics 

University of Edinburgh 

2013



i 

Abstract 

With commodity multicore architectures already prevalent, the microprocessor industry is 

poised to leap into the manycore era within the next few years. To avail of such machines’ 

multiprocessing capabilities, software developers are increasingly incentivized to parallelize 

their programs. This trend poses new challenges for the system scheduler, which will now 

need to consider the parallel characteristics of the respective programs when seeking to 

maximize the system-level performance of its multiprogram workloads. 

In this project, we reconcile two orthogonal approaches: work-stealing task-scheduling for 

efficiently unravelling structured parallelism from each program, and scalability-based 

processor-partitioning for dynamically optimizing the programs’ core allocations within the 

context of the current multiprogram workload on the manycore machine. We 

experimentally demonstrate that, for low- to moderate-scalability programs, our 

multiprogram scheduler can succeed in achieving modest improvements over mainstream 

thread and task schedulers. 

 

Keywords:  parallel programming; structured parallelism; algorithmic skeletons;  

divide-and-conquer; manycore multiprocessing; multiprogram workloads;  

processor partitioning; scheduling; scalability; dynamic optimization 
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Chapter 1: Introduction 

Parallel programming has been receiving a lot of attention since the microprocessor 

industry’s shift to multiprocessing at the turn of the century, following the cessation of the 

“free lunch” of exponential performance improvements for sequential applications after 

hitting physical limits such as the power wall [1]–[3]. The de facto technique for harnessing 

parallelism has traditionally been threaded programming, despite its various 

shortcomings [4], [5]. Recent attention has been shifting towards higher-level parallel 

programming frameworks, principally building on the notion of tasks, with popular products 

including Intel TBB (2006) [6], OpenMP (2008) [7],1 and Microsoft TPL (2010) [8]. 

The microprocessor industry is now on the verge of leaping from the multicore to the 

manycore era [3], [9], spurring initiatives such as the Intel Many Integrated Core (MIC) 

architecture [10] and Single-Chip Cloud Computer (SCC) project [11]. Consequently, 

multiprogram workload scheduling is re-emerging as another important topic of research. 

As the number of processors in commodity machines rises drastically, it will become 

increasingly commonplace to have multiple programs – each internally parallel – executing 

concurrently on the same machine. This is a consequence both of need and of supply: 

A typical user workstation needs to have many applications active concurrently, yet most of 

these would not individually have the algorithmic scalability to exploit the full concurrency 

of a manycore machine. Strategies for dynamically distributing the active workload in a 

manner that best exploits the machine’s multiprocessing capabilities will become essential 

to achieve high performance [12]–[15]. 

1.1 Aim 

The principal aim of this project is to devise and investigate scheduling strategies for 

optimizing the performance of task-parallel programs embodying divide-and-conquer 

algorithms, particularly when executing concurrently as a multiprogram workload on a 

manycore machine. 

 

                                                           
 

1
  Although OpenMP was first released in 1997, the concept of tasks was only introduced in 

OpenMP 3.0, released in 2008. 

http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-computer.html
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1.2 Hypothesis 

The divide-and-conquer algorithmic pattern inherently captures information about the 

computational characteristics of its implemented applications. Due to its well-defined 

formulation as a recursion, it follows a structured execution whose constitution may be 

accessed and controlled by the underlying scheduler. 

 

Figure 1.1. Concurrent execution of two divide-and-conquer programs, providing a preview of the 

nature of our scheduling strategies. Note that fs represents a split operation; fe, an execute (being 

the base case of the recursion); and fm, a merge. The programs may be scheduled as:  

spread across all processors (left); allocated to dedicated subsets of the processors (centre);  

and having their granularities adjusted dynamically for their current allocations (right). 

A pattern-aware scheduler may exploit this structural rigour to optimize applications’ 

amenability to parallelism (as hinted in Figure 1.1). By inferring knowledge about each 

application’s scalability and data locality, the scheduler can guide their decomposition into 

parallel subtasks and improve the subtasks’ distribution across the system’s 

multiprocessors, boosting their concurrent execution within the context of the 

multiprogram workload.  
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Our hypothesis is that such schedulers can achieve better system-level performances than 

traditional ones (including the default thread schedulers present in mainstream operating 

systems), especially for multiprogram workloads having variable scalabilities.  

1.3 Contributions 

The main research contributions of our project are as follows: 

 We create a fresh implementation of the divide-and-conquer algorithmic skeleton 

for the .NET Framework, demonstrating the power of parallelism abstractions by 

layering our skeleton atop the task infrastructure provided by the Task Parallel 

Library (TPL) in .NET. 

 We develop a novel extension to the work-stealing task-scheduling algorithm for 

handling multiprogram workloads. Our multiprogram scheduler employs a common 

pool of pinned worker threads that service a collection of program-specific task 

queue superstructures. This scheduler will serve as the mechanism through which 

we perform processor partitioning. 

 We adapt the work of Sasaki et al. [13] and use program scalability as the base 

policy for driving our processor partitioning decisions. On top of this, we enact a 

dynamic reallocation strategy that regularly polls the number of available tasks in 

each program and adjusts processor allocations accordingly, with the goal of 

promoting full utilization of the machine’s processors. 

 Through our multiprogram scheduler, we investigate the potential for synergy 

between work-stealing task-scheduling and scalability-aware processor-

partitioning, and report on the performance obtained for a sample multiprogram 

workload. Our experiments show that our scheduler can outperform the Linux 

thread scheduler by 2% for low- to moderate-scalability workloads. 
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1.4 Common Symbols 

Figure 1.2 presents the common set of symbols that will be used in the diagrams we 

provide to complement our discussions throughout this dissertation.  

 

2 processor 
3 

 

 multicore or manycore processor 

 
 thread 

 
4 thread pinning 

 

5 program instance 

 
6 sequential code snippet 

 

 task queue 

Figure 1.2. Common symbols used throughout this document 

Our diagrams also make extensive use of colour coding, whose significance can typically be 

inferred from context. In most cases, colours are used to differentiate either among 

programs (like in Figure 1.1) or among execution phases (like throughout Section 4.4, p. 41). 

  

 

                                                           
 

2
  Source: CPU Icon by Chris Banks 

3
  A “processor” should always be assumed to correspond to a single logical core, rather than an 

entire multicore or manycore chip, unless using the other symbol below. A logical core 

constitutes the smallest hardware component in a central processing unit (CPU) that can support 

thread-level parallelism. 

4
  Source: Pin Icon by Anna Shlyapnikova 

5
  Source: App X Executable Icon by Untergunter 

6
  Source: Source Code Icon by Fatcow Web Hosting 

         

  

http://www.iconarchive.com/show/cold-fusion-hd-icons-by-chrisbanks2/cpu-icon.html
http://www.iconarchive.com/artist/chrisbanks2.html
http://www.iconarchive.com/show/toolbar-2-icons-by-shlyapnikova/pin-icon.html
http://www.iconarchive.com/artist/shlyapnikova.html
http://www.iconarchive.com/show/leaf-mimes-icons-by-untergunter/app-x-executable-icon.html
http://www.iconarchive.com/artist/untergunter.html
http://www.iconarchive.com/show/farm-fresh-icons-by-fatcow/source-code-icon.html
http://www.iconarchive.com/artist/fatcow.html
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1.5 Document Structure 

This dissertation has been intentionally structured to interleave two orthogonal streams: 

the parallelism abstraction offered by tasks and algorithmic skeletons; and the processor 

partitioning of multiprogram workloads. The reconciliation of these two aspects is one of 

our central contributions (and will be finally brought to fruition in Section 5.3, p. 64). 

Chapter 1 introduced our project by setting out the context that motivated our 

investigation. It subsequently established our aim and the hypothesis that we shall be 

evaluating, followed by an overview of the main contributions of our system. 

Chapter 2 visits the background pertinent to our research, including: the recent 

proliferation of multiprocessing; the various parallelism abstractions available to 

application developers as a front-end for harnessing it; the thread-scheduling algorithms 

that traditionally served as the low-level back-end; and performance metrics suitable for 

parallel systems. Chapter 3 explores some published work that is related to – and serves as 

the foundation for – our research. Given that our focus is on task parallelism, we analyse 

the designs of the task schedulers underlying Skandium and TPL. We then examine a 

recently-published processor-partitioning scheduler, giving a taste of this alternate 

direction of parallel optimization. 

Chapter 4 presents the design of our divide-and-conquer skeleton and the parallel 

programs that we build upon it, offering insights into their dynamic behaviour. Chapter 5 

delves into our scheduler designs, first explaining how we enact processor affinity, then 

defining some multiprogramming schemes for executing task-parallel programs 

concurrently. Subsequently, it presents our novel multiprogram scheduler, which synergizes 

the relationship between task scheduling and processor partitioning. 

Chapter 6 briefly describes our experimental setup, outlining our hardware platform, 

software platform, and the statistical methods we employ. Chapter 7 is dedicated to our 

experimental results and analysis, covering aspects such as task granularity, hardware 

concurrency, program scalability, and multiprogramming schemes. We compare our results 

to related work and justify any differences.  
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Finally, Chapter 8 serves as the conclusion which closes up our discussion, summarizing our 

achievements and potential improvements. It is followed by the Bibliography, which lists all 

the publications cited throughout this dissertation. 

1.5.1 Submission Details 

The original proposal for this project was nominated by Murray Cole as “Scheduling 

Multithreaded Java Programs in a Multiprogram Workload”. Some content in this 

dissertation has been adapted from our own Informatics Research Review (IRR) and 

Informatics Research Proposal (IRP) submissions, albeit largely re-narrated or significantly 

expanded. 

This dissertation is complemented by a Visual Studio solution comprising all our source 

code, including the D&C skeleton, sample programs, schedulers, optimizers, 

multiprogramming schemes, and test harnesses. We also provide the raw data gathered 

from our final experiments, as well as a spreadsheet containing the aggregated results in 

tabular format, alongside the associated charts used in this document. 

The submitted paper copies of this dissertation were accompanied by a signed 

“project copyright permission letter” and “own work declaration” form. 

For updates and corrections to this document effected after submission, one may refer to 

our DivCon webpage,7 or contact us by email on karl.fenech@gmail.com. The current 

version of this document corresponds to revision 65. 

 

  

 

 

 

                                                           
 

7
  URL: http://dogmamix.com/DivCon/  

https://projects.inf.ed.ac.uk/msc/2012/project?number=P124
https://projects.inf.ed.ac.uk/msc/2012/project?number=P124
http://www.inf.ed.ac.uk/teaching/courses/irr/
http://www.inf.ed.ac.uk/teaching/courses/irp/
http://dogmamix.com/DivCon
mailto:karl.fenech@gmail.com
http://dogmamix.com/DivCon/
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Chapter 2: Background 

Our background spans a number of interrelated areas. We first discuss how the 

proliferation of multiprocessing is driving application developers to embrace parallel 

programming. This leads us to explore the levels of abstraction at which such parallelism 

may be expressed, culminating with structured parallel programming through algorithmic 

skeletons. This corresponds to the front end of our research, since it represents the 

interface exposed to the application developers. Next, we study the function of thread 

scheduling, which constitutes the back end of our investigation, since it provides the 

rudimentary mechanism through which parallelism is actualized. Finally, we present some 

performance metrics for evaluating parallel systems, and justify our choice of the .NET 

Framework as our development platform. 

2.1 The Concurrency Revolution 

For several decades, software developers have readily benefitted from the effect of 

Moore’s Law [16] on microprocessor architectures. Exponential improvements in transistor 

densities regularly gave rise to increased clock speeds, instruction-level parallelism (ILP), 

and on-chip cache capacities [1], [17]. These hardware improvements translated into 

inherent performance gains for applications, including sequential ones, without requiring 

any alteration to their software implementations [2]–[4], [18].  

However, the convenient trend of ever-increasing clock frequencies eventually ran into 

physical limits imposed by the “power wall”, encountering issues with power consumption, 

heat dissipation, and current leakage [1], [2], [17], [19] (see Figure 2.1 below). Similarly, ILP 

advances have been exhibiting diminishing returns, requiring complex architectural 

improvements for merely incremental performance gains [20], [21]. 

At the turn of the century, mainstream microprocessor manufacturers switched to thread-

level parallelism (TLP) as the primary means of sustaining performance improvements [1], 

[3]. In the field of central processing units (CPUs), two hardware technologies 

flourished [12], [22]: simultaneous multithreading (SMT), which permits multiple threads to 

be executed simultaneously on a superscalar architecture by replicating the registers and 

program counters [23]; and chip multiprocessing (CMP), which integrates multiple cores, 
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each capable of independent execution, onto the same chip [17], [20]. Today, CMP 

(popularly known as “multicore”) has become ubiquitous [3], with client architectures 

supporting hundreds of cores [15] expected by 2020 [3]. 

 

Figure 2.1. Intel microprocessor trends, showing that increasing transistor densities  

have ceased giving higher clock speeds since 2005. Copied from Sutter [1]. 

As a consequence of the proliferation of thread-level parallelism in modern 

microprocessors, applications seeking to fully exploit their capabilities will need to be 

concurrent [1], [2]. Notwithstanding hopes for a “quantum leap” in compilers’ abilities at 

automatic parallelization [24], such technology has not yet made its way into mainstream 

software development [2], [4], [5]. Thus, it is becoming increasingly important for software 

developers to take the initiative in parallelizing their applications [3], [4], [25]. 

“Concurrency is the next major revolution in how we write software.” 

 — Sutter [1] 
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Despite the hardware imperative, parallel programming has experienced disappointingly 

slow uptake in mainstream application development [3], [4]. The major obstacle hindering 

its adoption is the conceptual difficulty that most developers experience when reasoning 

about concurrency [1]–[3], [5], [26], often finding themselves “quickly overwhelmed” [4]. 

The situation is exacerbated by the inadequacy of most current languages and tools at 

expressing and harnessing parallelism [2]–[4]. In the next section, we shall explore how 

parallel abstractions influence this issue. 

“[We need] higher-level abstractions that help build concurrent programs, just 

as object-oriented abstractions help build large componentized programs.” 

 — Sutter & Larus [4] 

2.2 Parallel Abstractions 

Cole [27] highlights two main aspects to parallelization: problem decomposition, being the 

identification of the potential parallelism in the expressed algorithm; and distribution, 

through which parallel candidates are mapped onto the available processors for concurrent 

execution. This distinction often manifests as an important abstraction presented by the 

software framework to the application developer, wherein the developer is expected to 

specify the parallel constructs (in some form), but then relegates the responsibility of their 

instantiation and concurrent execution to the runtime environment.  

The degree of abstraction has strong implications on the roles played respectively by the 

developer and the runtime in harnessing parallelism, with lower-level frameworks affording 

more flexibility but less insulation from performance-critical factors, such as 

communication, synchronization, granularity, and load-balancing, as well as greater 

exposure to parallelism’s hazards, including nondeterminism, races, deadlock, livelock, and 

starvation [2]–[4]. 

“The aggressive goal of the parallel revolution is to make it as easy to write 

programs that are as efficient, portable, and correct (and that scale as the 

number of cores per microprocessor increases biennially) as it has been to write 

programs for sequential computers.”  — Asanovic et al. [2] 
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2.2.1 Threaded Programming 

A thread is an execution primitive, spawned by a process, that may be independently 

managed by the operating system [28].8 Threaded programming, as exposed through 

implementations such as POSIX threads (pthreads) and Windows threads, is today’s 

dominant paradigm for parallel programming [4], [5]. Multithreaded programs may harness 

the concurrency of multiprocessing systems by having their threads execute on distinct 

processors, with oversubscription handled transparently by the thread scheduler using pre-

emptive time-slicing [28]. (Thread scheduling will be discussed in Section 2.3, p. 15.) 

 

Figure 2.2. Multithreading on multiprocessors. Traditionally, most research has focussed either on 

individual multithreaded programs (left), or on workloads of multiple sequential programs (centre). 

However, multithreaded multiprogramming (right) is now receiving substantial attention. 

The main appeal of the threaded programming paradigm is its shared memory abstraction, 

whereby all threads of the same process may be assumed to access a single logical address 

space, irrespective of which processor they are being executed upon. This makes threading 

appear like a “seemingly straightforward adaptation” of sequential programming, which 

could explain its present-day popularity [5]. The costs incurred from intercommunicating 

via main memory are mitigated through the presence of multiple levels of caches, which 

maintain consistency using cache coherence protocols [29]. 

Whilst suitable for embarrassingly parallel algorithms, threads impart too much 

responsibility on the application developer, who has to carefully synchronize their 

execution wherever they interact, including for shared-memory access [5]. The arbitrary 
 

                                                           
 

8
  We shall be restricting our discussion to kernel-level threading. User threads, wherever 

mentioned or implied, should be assumed to follow a one-to-one mapping onto kernel threads, 

as is specifically the case for threads in the .NET Framework under its current implementation. 
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interleaving of threads across distinct code entities can cause leaky abstractions, resulting 

in spaghetti code that widens “the conceptual gap between the static program and the 

dynamic process” (analogous to the adverse effects of goto statements before the advent 

of structured programming) [30], [31]. 

“Threads, as a model of computation, are wildly nondeterministic, and the job 

of the programmer becomes one of pruning that nondeterminism. […] Rather 

than pruning nondeterminism, we should build from essentially deterministic, 

composable components. Nondeterminism should be explicitly and judiciously 

introduced where needed, rather than removed where not needed.” — Lee [5] 

Furthermore, threads are expensive to maintain. Their creation and destruction require 

costly system calls; similarly, context-switching between threads incurs overheads [32].  

In order to prevent these issues from degenerating into a performance bottleneck, it 

becomes necessary to treat threads as long-lived entities, ideally reusable across multiple 

operations [33], which may possibly be fed from a higher level of abstraction.  

2.2.2 Task Parallelism 

Most modern programming frameworks introduce the notion of a thread pool, whereby 

the execution runtime assumes responsibility for maintaining a persistent set of reusable 

threads [33]. This way, application developers are insulated from explicit thread lifecycle 

management, and may instead focus on expressing potential parallelism through a series of 

tasks, to be picked up and executed by the thread pool [8]. Tasks, which represent a “finite 

CPU-bound computation”, are typically implemented as user-space constructs, making 

them significantly more lightweight than threads, thereby allowing for parallelism to be 

captured at finer granularities [8]. Runnable tasks are scheduled for execution through a 

task queue, which is typically serviced by a thread pool [8], [25], [34]. (See Section 3.1, 

p. 21, for a discussion of task scheduler implementations.) 

Campbell et al. [34] describe some high-level patterns for tasks. For scenarios involving 

static parallelism, tasks may be programmed using the traditional fork–join pattern, where 

one spawns a number of tasks and waits for them to collectively complete. Algorithms 

based on data-flow constraints may be better-served by the “futures” pattern, wherein 

each task serves as a placeholder for a data value that is yet to be computed [4]. Dynamic 

parallelism may be achieved by spawning nested tasks from executing tasks. Finally, 
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asynchronous programming is possible through continuations, which are tasks that may 

only be started once an antecedent task (or collection thereof) completes.  

Collectively, the aforementioned patterns may be visualized as giving rise to a graph-

structured flow of execution, whose directed edges represent control dependencies among 

the tasks. Whilst the patterns’ flexibility permits task graphs to be composed arbitrarily, this 

requires careful design from the application developer. In some cases, it may be possible to 

raise the level of abstraction further by providing pre-composed task graphs through 

structured parallelism. 

2.2.3 Structured Parallelism 

 

Figure 2.3. Stack of parallelism abstractions, demonstrating how each level builds on the one below 

it to simplify the developer’s role in harnessing the machine’s multiprocessing capabilities. 
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Structured parallel frameworks empower developers to express their algorithm as an 

instance of a parallel pattern from a supplied patterns library. These patterns would 

correspond to classes of algorithms that are popular candidates for parallelization [3], [35], 

such as loops of independent iterations, or decomposable problems that are solved 

recursively using a divide-and-conquer approach [25], [31]. By taking advantage of the 

natural boundaries intrinsic to the algorithm, structured parallelism captures the 

developer’s algorithmic intent [4], rather than a specific tortuous implementation. 

Structured parallelism insulates application developers from the responsibility of defining 

parallel units of execution at any degree of granularity. Rather, developers would only need 

to specify how such parallelism may be extracted from the problem, leaving it up to the 

runtime to avail of this potential. Consequently, the runtime may apply heuristics to 

dynamically come up with a good strategy for splitting up the work into parallel chunks, 

whilst accounting for data locality and load balancing (as exemplified through the various 

loop scheduling schemes in OpenMP [36]). 

Algorithmic skeletons present a common formalization of structured parallelism [37]. By 

building on a consistent collection of patterns, skeletal programming aims to “transcend 

architectural variations”, permitting portability across disparate architectures whilst 

maintaining performance through architecture-specific implementations of the patterns 

library [35]. 

2.2.4 Divide-and-Conquer Skeleton 

The divide-and-conquer (D&C) skeleton provides the common algorithmic pattern 

underlying our investigation. The skeleton is functionally parameterized through: 

a condition function,   ; a split function,   ; an inner skeleton,  ; and a merge function, 

   [25]. In general, the inner skeleton could be defined as another skeleton type, 

permitting nested recursion [25]. However, for the scope of our experiments, we will 

assume that the inner skeleton will correspond to the execution of a muscle function,   , 

which represents the sequential operation serving as the base case of the divide-and-

conquer recursion. 

The semantics of the D&C skeleton are as follows [25], [27]: Given an initial problem, the 

condition function is applied to determine whether it should be split. If affirmative, the 

problem is divided into a collection of subproblems using the ‘split’ function, which are 
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then fed into the same D&C skeleton to be processed recursively. Once all the 

corresponding subresults have been computed, they are combined through the ‘merge’ 

function to give the result for that level. On the other hand, if the condition function 

declined to split, then the problem is fed into the ‘execute’ function, which directly 

computes its corresponding result. This is demonstrated diagrammatically in Figure 2.4. 

 

Figure 2.4. Activity flow for the D&C skeleton.  

The self-referential definition of the D&C block underlies its recursive execution.  

D&C’s potential parallelism arises from the concurrent evaluation of the independent 

subproblems at each level of the recursion [27], wherein each subproblem may cause a 

new task to be spawned. The number of subtasks produced by each invocation of the split 

function is known as the “branching factor”, and may be as small as two. However, each 

recursion level causes the degree of concurrency to increase exponentially – for example, 

after a recursion depth of ten, a binary D&C algorithm may have as many as 1024 tasks 

available for concurrent execution.  
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2.3 Thread Scheduling 

General-purpose operating systems employ a thread scheduler for allocating available 

threads onto processors for execution. Such schedulers typically use time-slicing, whereby 

multiple threads may be given the illusion of concurrent execution on the same processor 

by being each run for short periods, known as quanta, in a round-robin manner [6], [28]. 

Once a thread’s quantum expires, it is pre-empted, and the scheduler picks the next thread 

to be swapped in.  

This approach promotes fairness, but also incurs overheads, since a context switch must be 

performed at the end of each quantum [28]. Each context switch needs to save the 

processor state of the current thread, and load the saved state of the next thread; this 

procedure takes several clock cycles. Furthermore, context switches impose indirect 

performance penalties due to the “perturbation of processor caches like the instruction, 

data, address translation, and branch-target buffers” [38]. Context switching among 

threads associated with different virtual address spaces requires the processor’s translation 

lookaside buffer (TLB) to be invalidated; consequently, any caches tagged using virtual 

addresses would need to be flushed [38]. 

On symmetric multiprocessing architectures (such as SMT and CMP), the operating system 

can schedule a thread onto any processor. In such cases, the scheduler’s goal is to achieve 

load-balancing by having the current workload distributed more or less evenly across all 

processors. At the same time, the scheduler also aims to promote affinity – a given thread 

should be kept running on the same processor for as long as possible, in order to improve 

its potential for cache reuse, and only migrated to another processor when there is a 

specific need to restore the load balance [12], [28]. Most systems also allow thread affinity 

to be controlled explicitly by the user, who may pin a specific thread to a subset of the 

processors. 

2.3.1 Processor Partitioning 

As the number of cores in commodity multiprocessing machines continues to rise, the 

inadequacy of mainstream schedulers for executing parallel workloads is becoming more 

pronounced [12]. By treating each thread as an independent unit of execution, schedulers 

forgo consideration of inter-thread dependencies that could have a significant impact on 

the throughput of the system. Specifically, collaborating threads that are tightly-
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coordinated or share a lot of data would execute faster if scheduled onto the same core or 

chip [12].  

Processor partitioning is a technique whereby specific threads are pinned to specific 

processors in a manner that promotes their inter-thread affinity [13]. Threads executing on 

the same physical core (through oversubscription or simultaneous multithreading) would 

share its private L1 and L2 caches; threads executing on distinct cores within the same 

physical chip share the L3 cache; whilst threads executing on distinct chips may only 

intercommunicate through main memory [39]. Thus, closely-related threads would benefit 

from constructive interference if allocated to proximate processors, since cache reuse is 

boosted by the locality of reference (both temporal and spatial) arising from their 

overlapping working sets [39].  

Most parallel programs are configured to initialize at least as many threads as there are 

logical cores, so as to fully utilize the multiprocessor machine when run in isolation [12], 

[13], [34]. When running as part of a multiprogram workload, the programs themselves 

provide a natural boundary for processor partitioning [12], [40] (see Figure 2.5). By pinning 

each compute-intensive program’s threads to run on a dedicated subset of the machine’s 

cores, performance gains may be reaped due to the “high cache-hit ratio and low 

synchronization overhead” [40]. Additionally, the context-switching performance penalty is 

significantly reduced: Since the threads would be associated with the same virtual address 

space, the TLB and caches do not need to be flushed [38]. 

 

Figure 2.5. Processor partitioning by program. In a multiprogram context, threads belonging to the 

same program instance may execute faster when scheduled onto the same core or processor chip,  

rather than intermingled with the other programs’ threads. 
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As cores become abundant, processor partitioning may also serve to provide “performance 

isolation and security between multiprogrammed applications” [3]. 

2.3.2 Program Scalability 

Figure 2.5 (above) depicts an egalitarian partitioning strategy, where each program is 

allocated an equal number of cores. However, this strategy is suboptimal when the 

programs exhibit different scalabilities, since highly-scalable programs would (by definition) 

perform better when allocated large numbers of cores than poorly-scalable ones would –  

in fact, some programs cease to yield any speedup altogether beyond a certain degree of 

concurrency. For this reason, system throughput may be boosted by partitioning the 

processors among the programs based on their scalability [13], as exemplified in Figure 2.6 

(below). 

 

Figure 2.6. Processor partitioning by program scalability. In this example, the first program is twice 

as scalable as the second (for some notion of scalability), and is therefore allocated twice as many 

processors. Similarly for the third and fourth programs, which are only half as scalable as the second. 

2.4 Performance Metrics 

There is broad consensus that the preferred performance metric for an individual program, 

 , should be its execution time (i.e. wall-clock time),   [41]. The speedup of a program,  , is 

defined as the ratio of its sequential execution time on a single processor,     , to its 

parallel execution time on the multiprocessing machine,     , and is the prevalent metric 

for evaluating parallel processing systems [42]. Efficiency,  , is the ratio of the speedup to 

the number of processors used [43]. 

 

                                  

   16× 8× 4× 4× 
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Eyerman & Eeckhout [41] present various metrics for assessing system-level performance 

of multiprogram workloads. By executing a single program,   , in isolation, granting it 

exclusive access to all the machine’s processors, one may obtain its performance in “single-

program mode”,   
  . When executed concurrently with other programs, one would 

measure its “multiprogram mode” performance,   
  .  

The latter performance intuitively depends on the degree of multiprogramming and the 

nature of the other programs. However, even for a fixed multiprogram workload, the 

performance would vary depending on the implementation of the scheduler responsible for 

distributing the programs over the available cores. Thus, by testing different schedulers 

against a given workload, one can quantitatively measure and compare the efficacies of 

their scheduling strategies. 

2.4.1 Turnaround Time 

Eyerman & Eeckhout [41] promote normalized turnaround time,     , as the main user-

oriented performance metric for each program, since it “quantifies the user-perceived 

turnaround time slowdown due to multiprogram execution”. 

            
  

  

  
   

This value may be averaged across all   executing programs to obtain a system-level 

measure, average normalized turnaround time (    ) [41]: 

             
 

 
 ∑

  
  

  
  

 

   

 

    , which is adopted by Sasaki et al. [13], is a lower-is-better metric. When the degree 

of multiprogramming is  ,      is expected to vary between an ideal value of   (which 

indicates that there is no program interference or resource contention whatsoever) and an 

upper bound of   (which would be equivalent to executing the programs consecutively in 

isolation) [41]. 
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A related system-level metric is maximum normalized turnaround time (    ), which is 

similarly defined [41]: 

                
         

(
  

  

  
  ) 

2.4.2 Throughput 

Eyerman & Eeckhout [41] suggest that performance studies should also use a system-

oriented metric such as throughput, which measures “the number of programs completed 

per unit of time” and, therefore, gives an indication of the rate at which each program 

progresses. Each program’s normalized progress,    , is the reciprocal of its     : 

           
  

  

  
   

The system throughput,    , may be obtained by summing the normalized progress of 

each program, giving a higher-is-better metric, that again ranges between   and   [41]: 

            ∑
  

  

  
  

 

   

 

2.4.3 Variability 

Typical hardware architectures are nondeterministic at the clock-cycle level. Each processor 

chip, as well as main memory, is driven by its own local clock, which can give rise to minor 

timing fluctuations whenever they interact over buses [44]. Pre-emptive thread scheduling 

at the operating system level introduces further unpredictability, since a program may get 

interrupted at arbitrary points in time [45]. The effects of these factors are amplified in 

parallel scenarios, where differences in the outcomes of resource contention may lead to 

substantial performance variability [45]. Therefore, any performance measurements should 

be consolidated by running experiments repeatedly and applying statistical methods over 

the results, as discussed for our experiments in Section 6.3 (p. 79). 
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2.5 Parallel Programming in .NET Framework 

We developed our implementation artefacts using the .NET Framework, with C# as the 

programming language. As a high-level software development platform, .NET is similar in 

scope to Java, but has seen significant improvements in its support for parallel 

programming since .NET 4.0 (released in 2010), which introduced structured parallelism 

through the Task Parallel Library (TPL) and Parallel LINQ (PLINQ) [26], [34]. Furthermore, C# 

supports first-class anonymous functions, including lambda expressions, which are hailed as 

“necessary ingredients” for enabling the succinct expression of parallelism using a library-

based approach in a strongly-typed language [8]. 

http://www.microsoft.com/net
http://msdn.microsoft.com/en-us/library/618ayhy6.aspx
http://msdn.microsoft.com/en-us/library/dd460717.aspx
http://msdn.microsoft.com/en-us/library/dd460688.aspx
http://msdn.microsoft.com/en-us/library/bb882516.aspx
http://msdn.microsoft.com/en-us/library/bb397687.aspx
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Chapter 3: Related Work 

This chapter will be mostly dedicated to the designs underlying existing task schedulers, 

which serve as the foundation for our multiprogram scheduler. The last section describes 

the scalability-based manycore partitioning (SBMP) scheduler of Sasaki et al. [13], thereby 

exposing the orthogonal scheduling approach offered by processor partitioning. 

3.1 Task Schedulers 

Our investigation focuses on programs expressed as instantiations of the divide-and-

conquer skeleton. In Section 2.2.4 (p. 13), we discussed how this skeleton could be 

unravelled to provide potential parallelism as a series of tasks. However, for these tasks to 

effectively utilize the concurrent capabilities of multiprocessing machines, they need to be 

serviced by a task scheduler that can map them onto the available processors. We shall 

now study the design of the task schedulers powering two parallel libraries: Skandium [25] 

and Microsoft Task Parallel Library (TPL) [8], [34]. (Other mainstream task schedulers are 

provided by Intel Threading Building Blocks (TBB) [6], [46] and OpenMP [7], but will not be 

discussed here due to space constraints.) 

3.1.1 Skandium 

Skandium [25] evaluates skeletons using a producer–consumer workflow, wherein each 

skeleton produces tasks to a shared task queue, known as the “ready queue”, whence they 

may be consumed by a pool of worker threads for execution. By default, the size of the 

thread pool is equal to the number of logical cores on the machine.9 

Initially, each skeleton would enqueue the root task representing the top-level problem 

instance. As each task is being processed, it may dynamically spawn further subtasks; these 

are also added to the ready queue, pending execution. Subsequently, the parent task 

transitions into the waiting state, making it ineligible for scheduling. The procedure is 

repeated recursively according to the skeleton structure, until one arrives at the muscle 

functions, which, being sequential, are directly executed. Once all its subtasks have been 
 

                                                           
 

9
  As explained in Section 2.1 (p. 7), simultaneous multithreading permits each physical core to 

execute multiple threads concurrently at the hardware level; these are called “logical cores”. 
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completed, the parent task is reinserted into the ready queue, so that it may subsequently 

collate the results of its subtasks and complete its execution [25]. 

 

Figure 3.1. Task scheduling in Skandium, depicting how the pool of worker threads  

services the ready queue of pending tasks. Copied from Leyton & Piquer [25]. 

The use of a centralized queue in Skandium serves as a source of contention, since its 

access must be synchronized across all threads. This issue becomes more pronounced as 

the granularity of the tasks becomes smaller and/or the number of cores becomes larger, 

leading to a point where the synchronization overheads would offset any performance 

benefits from the parallel execution [34]. 

3.1.2 Task Parallel Library 

Task Parallel Library (TPL), by default, uses a work-stealing task scheduler that is tightly 

integrated with the thread pool of the .NET Framework. This scheduler mitigates the 

bottleneck arising from Skandium’s centralized queue by maintaining a dedicated task 

queue for each worker thread, with threads mainly fetching tasks from their own local 

queues. If its local queue becomes empty, a thread may fetch tasks from the global queue, 

which would contain the root tasks. (In our case, the root tasks would represent the top-

level problem generated by each D&C program instance.) If the global queue is also empty, 

a thread may engage in work-stealing from another thread’s queue [8], [34]. 

In order to promote data locality, worker threads add and remove tasks at the same end of 

their local queue in LIFO fashion. The rationale is that a recently-added task is more likely to 

share some of the same data as the last-executed task; thus, the data may be reused from 
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cache. On the other hand, thief threads steal tasks from the opposite end of the remote 

queue. This is particularly beneficial for divide-and-conquer algorithms, since it inherently 

promotes load-balancing by ensuring that the largest tasks (from higher levels in the 

recursion) are stolen first, thereby keeping the thief thread busy for a substantial period of 

time before its queue becomes empty again [8], [34]. 

 

Figure 3.2. Global queue and per-thread local queues in TPL, showing  

LIFO pushing/popping of local tasks, and FIFO work-stealing of remote tasks.  

Copied from the “Task Parallel Library” article by Sacha Barber on CodeProject. 

The internal implementation of the task queue uses lock-free execution to minimize the 

synchronization required for preventing race hazards when multiple threads contend to 

take tasks from the same queue. Specifically, the algorithms for pushing and popping tasks 

at the local queue avoid the need for acquiring an explicit lock in the majority of cases, only 

falling back to locking when there is a chance of being raced by a thief thread [8]. 

The .NET thread pool dynamically adjusts its number of worker threads using a hill-climbing 

heuristic that aims to maximize throughput. By design, once they start executing, tasks 

cannot be pre-empted from their worker thread; thus, a task that blocks (due to I/O or 

synchronization) would stall its processor. In such cases, thread injection is used to avoid 

underutilization and starvation [34]. However, since the heuristic does not distinguish 

http://www.codeproject.com/Articles/159533/Task-Parallel-Library-2-of-n
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between blocked tasks and long-running compute-intensive operations, thread injection 

can result in counterproductive thread oversubscription. 

TPL’s default scheduler achieves high throughputs and improved scalabilities over large 

numbers of processors [8]. Leyton & Piquer [25] report a 3.4× speedup when using 

Skandium to run quicksort over 8 cores; Leijen et al. [8] push this up to 5.1× using TPL, 

registering an improvement of 50% (without accounting for experimental or 

implementational differences). 

Internally, TPL implements this default scheduler within the ThreadPoolTaskScheduler 

class. Apart from its tight coupling with the thread pool, this class is declared as both 

internal and sealed, making it impossible to extend without reverse-engineering. Mono has 

a similar internal implementation within its Scheduler class. 

3.1.3 Work-Stealing Task Scheduler 

In their “Samples for Parallel Programming with the .NET Framework” project, Microsoft 

provide the source code for a number of custom task schedulers. Among these, one finds 

the WorkStealingTaskScheduler class,10 which implements a work-stealing task scheduler 

whose function is quite similar to a simplified version of the TPL default scheduler. The 

main behavioural difference is that it does not employ thread injection, but abides by the 

fixed concurrency level specified to its constructor. 

Figure 3.3 (below) shows how task schedulers derive from TaskScheduler, the abstract 

base class that serves as the extension point through which TPL allows custom task 

schedulers to hook into its task infrastructure [34]. The main abstract method that derived 

classes need to implement is QueueTask, for queuing a new task onto the concrete 

scheduler.11 

 

                                                           
 

10
  The implementation of this class is discussed in the “Building a custom thread pool: a work 

stealing queue” blog post by Joe Duffy. 

11
  This method is never called directly from user code. Rather, it is called by the TPL infrastructure 

(under the hood) whenever the user creates a new task to be scheduled onto the specific 

scheduler, such as by calling a TaskFactory.StartNew overload that accepts a TaskScheduler 

parameter. 

http://msdn.microsoft.com/en-us/library/7c5ka91b.aspx
http://msdn.microsoft.com/en-us/library/88c54tsw.aspx
https://github.com/mosa/Mono-Class-Libraries/blob/master/mcs/class/corlib/System.Threading.Tasks/Scheduler.cs
http://code.msdn.microsoft.com/ParExtSamples
http://msdn.microsoft.com/en-us/library/system.threading.tasks.taskscheduler.aspx
http://msdn.microsoft.com/en-us/library/system.threading.tasks.taskscheduler.queuetask.aspx
http://www.bluebytesoftware.com/blog/2008/08/12/BuildingACustomThreadPoolSeriesPart2AWorkStealingQueue.aspx
http://www.bluebytesoftware.com/blog/2008/08/12/BuildingACustomThreadPoolSeriesPart2AWorkStealingQueue.aspx
http://msdn.microsoft.com/en-us/library/system.threading.tasks.taskfactory.startnew.aspx
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Figure 3.3. Class diagram showing the composition of the task schedulers. The built-in 

ThreadPoolTaskScheduler and the sample WorkStealingTaskScheduler  

both derive from the TaskScheduler base class. 

The structure of the WorkStealingTaskScheduler is shown in Figure 3.4 (below). It spawns 

a batch of worker threads to operate its scheduling logic, with the aim of efficiently 

executing any queued tasks. It initializes a Queue<Task> to serve as the global queue, as well 

as a thread-local WorkStealingQueue<Task> to be the local queue for each worker thread. 

Both of these data structures can expand their capacities dynamically to accommodate any 

number of tasks as required. The LocalPush and LocalPop methods of the 

WorkStealingQueue data structure internally employ low-lock techniques (using the 

Interlocked class for atomic operations) to reduce synchronization overheads, whilst all 

other accesses are protected as critical sections (using the Monitor class). 
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http://msdn.microsoft.com/en-us/library/7977ey2c.aspx
http://msdn.microsoft.com/en-us/library/system.threadstaticattribute.aspx
http://msdn.microsoft.com/en-us/library/system.threading.interlocked.aspx
http://msdn.microsoft.com/en-us/library/system.threading.monitor.aspx
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Figure 3.4. Structure of the work-stealing task scheduler, containing  

one global task queue and per-thread local queues. The number of  

worker threads typically corresponds to the number of logical cores. 

WorkStealingTaskScheduler implements the inherited QueueTask method such that new 

tasks are pushed onto the local queue if originating from a worker thread, or enqueued to 

the global queue otherwise, as shown in Figure 3.5 (below). 

Each worker thread primarily services its own local queue. Once this empties, it picks up 

new externally-introduced tasks from a global queue. If this also empties, it steals from 

other threads’ queues, as depicted in Figure 3.6 (below). In any case, once a task is picked, 

it is executed through the inherited TryExecuteTask method of the base TaskScheduler 

class. 

We shall be using the WorkStealingTaskScheduler class as the basis of our schedulers, 

with minor modifications to improve its extensibility for our requirements, as discussed 

from Section 5.1 (p. 55) onwards. 
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Figure 3.5. Task production in the work-stealing task scheduler. Worker threads push 

new tasks to their local queues, whilst external threads add to the global queue. 

 

 

Figure 3.6. Task consumption in the work-stealing task scheduler. In order of preference,  

worker threads attempt to consume tasks from: ① their local queue; ② the global queue;  

③ other threads’ queues (work-stealing). 
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3.2 Partitioning Schedulers 

Sasaki et al. [13] propose a scalability-based manycore partitioning (SBMP) scheduler, 

designed for multithreaded multiprogrammed workloads executing on manycore machines. 

The scheduler dynamically infers each program’s scalability and thereby attempts to come 

up with an optimal core allocation that maximizes the system’s performance according to 

some desired metric, such as average normalized turnaround time (ANTT). For each 

program, the scheduler maintains a scalability table that records its relative performances 

when executed on various numbers of cores. Program performance is measured by 

counting cumulative retired instructions per second (IPS), using performance monitoring 

units (PMUs) provided by the processors. This information is collated across all programs, 

and used to drive a hill-climbing algorithm for arriving at a global assignment decision.  

The SBMP scheduler performs a repartitioning either when a program is created or 

terminated, or when a program’s scalability is detected to have changed sufficiently to 

signify a different execution phase. Experimental results show that the SBMP scheduler can 

outperform the default Linux scheduler by 18% for single-phase programs, and by 8% for 

programs in general when phase prediction is enabled [13]. 
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Chapter 4: Skeleton Designs 

In this chapter, we present our design for the divide-and-conquer skeleton, first describing 

its interface and high-level structure, then delving into the execution pattern that underlies 

its implementation. Sections 4.3–4.5 will subsequently be dedicated to an exposition of the 

parallel programs we developed upon this skeleton, including a discussion of various design 

considerations that affect their performances. 

4.1 Divide-and-Conquer Skeleton 

4.1.1 Functional Parameterization 

The divide-and-conquer (D&C) skeleton serves as the foundation for all our parallel 

programs in this investigation. Its algorithmic structure has already been discussed in 

Section 2.2.4 (p. 13); we shall now describe how we adapt it to the task infrastructure of 

the Microsoft Task Parallel Library (TPL). 

At the root of our design, we define a base class, DivConBase, whose four abstract methods 

permit the functional parameterization of the D&C skeleton: 

1 public abstract partial class DivConBase<TParam, TResult> 
2 { 
3     protected abstract bool ShouldSplit(TParam problem, int level); 
4     protected abstract TParam[] Split(TParam problem, int level); 
5     protected abstract TResult ExecuteMuscle(TParam problem, int level); 
6     protected abstract TResult Merge(TResult[] subResults, int level); 
7      
8     public Task<TResult> Input(TParam problem) { /* … */ } 
9 } 

Figure 4.1. D&C skeleton class basics, with type signatures adapted from Skandium [25]. 

Abstract methods are to be overridden by concrete implementations of D&C programs. 

Leijen et al. [8] extol parametric polymorphism (generics) as a “necessary ingredient” for 

expressing structured parallelism in strongly-typed languages. We employ two type 

parameters: TParam for the parameter type that will represent our problem (and 

subproblem) instances, and TResult for the result (and subresults). 

http://msdn.microsoft.com/en-us/library/512aeb7t.aspx
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4.1.2 Execution Interface 

As shown in Figure 4.1 (above), the only functionality exposed publicly for consumers is the 

Input method, which represents an asynchronous invocation of the D&C skeleton on the 

specified top-level problem instance. The returned Task<TResult> instance is a “future”, 

from which the final result may eventually be obtained, once the computation completes, 

through its Result property. Accessing this property before the task has completed would 

cause the current thread to block, similar to calling Wait under the fork–join pattern. 

 

Figure 4.2. Three-level divide-and-conquer execution flow 
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Under the hood, Input dynamically creates a task graph, where each split spawns further 

subtasks, as exemplified in Figure 4.2 (above). Conceptually, the Task<TResult> future 

returned from the method call would be equivalent to the final merge. The details of this 

behaviour will be discussed in Section 4.2 (p. 33). 

The performance implications of the rhombus-like shape of this task graph are, in effect, a 

manifestation of (an extended version of) Amdahl’s Law [47]. A D&C program gradually 

transitions from sequential to parallel (during splitting) and back (during merging). 

Specifically, for a branching factor  , a program would have      tasks at level   of the 

recursion. 

4.1.3 Scheduling Extensibility 

One of the strongest design features of TPL is its separation of the task abstraction from the 

task scheduler, permitting the various parallel patterns defined in Section 2.2.2 (p. 11) to be 

executed using custom task schedulers as described in Section 3.1.3 (p. 24). Most task-

creation facilities, such as TaskFactory.StartNew (for spawning root tasks or subtasks) and 

Task.ContinueWith (for registering continuations), accept a TaskScheduler parameter, 

through which custom schedulers may be specified [34]. 

We exploit this architectural extensibility by designing our D&C skeleton to accept a 

TaskScheduler instance as one of its parameter, which it will subsequently use for 

scheduling all the tasks it creates during its execution. 

4.1.4 Declarative Model 

C# supports first-class anonymous functions, such as lambda expressions, which permit 

parallel constructs to be expressed succinctly [8]. This functional style of programming may 

be blended with structured parallelism in imperative languages to reap the “rich sources of 

concurrency” exposed through the higher-order functions [4], such as is done in PLINQ for 

exploiting data parallelism. This way, one may approach the abstractional power of 

declarative systems, where developers can focus on the problem-domain logic, whilst 

remaining agnostic to the control flow underlying the program execution and, therefore, 

largely unaware of any notion of sequential or parallel execution [27].  

http://msdn.microsoft.com/en-us/library/system.threading.tasks.taskfactory.startnew.aspx
http://msdn.microsoft.com/en-us/library/system.threading.tasks.task.continuewith.aspx
http://msdn.microsoft.com/en-us/library/system.threading.tasks.taskscheduler.aspx
http://msdn.microsoft.com/en-us/library/bb397687.aspx
http://msdn.microsoft.com/en-us/library/dd460688.aspx
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To demonstrate this concept, we provide a declarative interface to our D&C skeleton, which 

can be consumed as shown in the simplified parallel quicksort implementation below:  

12 

1 var quickSort = CustomDivConFactory.Create<int[], int[]>( 
2     taskScheduler: TaskScheduler.Default, 
3     shouldSplit: (nums, level) => nums.Length > 1024 && level < 10, 
4     split: nums => new [] { 
5         nums.Where(n => n <  nums[0]), 
6         nums.Where(n => n >= nums[0]) }, 
7     executeMuscle: nums => { Array.Sort(nums); }, 
8     merge: results => results[0].Concat(results[1])); 
9      
10 int[] source = new [] { 8, 2, 9, 1, 0, 4, 15, 3, /* ... */ }; 
11 int[] sorted = quickSort.Input(source).Result; 

Figure 4.3. Simple parallel quicksort, expressed declaratively 

Figure 4.3 testifies to the expressive power of structured parallelism. When combined with 

LINQ, it permits a parallel (albeit inefficient) implementation of the quicksort algorithm to 

be fully expressed in just eight lines. (By contrast, a subclassing-based implementation of 

parallel quicksort in Skandium requires four classes spanning 26 lines of code [25].) 

Furthermore, it is trivially easy to also parallelize the split logic just by slapping an 

AsParallel decorator call onto the arrays, thereby achieving nested parallelism. 

4.1.5 Object-Oriented Model 

Notwithstanding its succinctness, the inefficiencies arising from the code in Figure 4.3 

(above) betray the issues that may arise from such a functional expression. LINQ is designed 

to honour referential transparency (like in functional languages); thus, our declarative 

skeleton causes a new array to be created behind the scenes for each Where and Concat call 

(at each level of recursion), leading to huge memory demands. 

Given that we are targeting shared-memory multiprocessors, we can design our D&C 

skeleton to assume statefulness, thereby taking advantage of the design benefits of object-

oriented programming (OOP). For sorting algorithms, we can discard the notion of 

referential transparency and permit in-place implementations, using encapsulation to 

 

                                                           
 

12
  We assume that the reader is familiar with the parallel quicksort algorithm. For a quick overview 

of how it may be implemented using the D&C skeleton, refer to Section 4.4.4 (p. 46). Note that 

the implementation in Figure 4.3 (above) simplistically picks the first element, nums[0], as the 

pivot value; in practice, this can lead to highly-unbalanced splits, and is discouraged.  

http://msdn.microsoft.com/en-us/library/bb397926.aspx
http://msdn.microsoft.com/en-us/library/system.linq.parallelenumerable.asparallel.aspx
http://msdn.microsoft.com/en-us/library/bb534803.aspx
http://msdn.microsoft.com/en-us/library/bb302894.aspx
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maintain a single instance of the elements array internally. Similarly, we employ inheritance 

and polymorphism to structure our programs as a class hierarchy, with common 

functionalities implemented in base classes and overridden as necessary in subclasses, as 

discussed in Section 4.3 (p. 39). 

4.2 Task Generation 

We shall now explain how the D&C skeleton dynamically generates the task graph 

portrayed in Figure 4.2 (p. 30) along its recursive execution. We present two possible design 

patterns, and discuss their comparative performances. 

4.2.1 Fork–Join Pattern 

Both Leijen et al. [8] and Campbell et al. [34] advocate a fork–join pattern for parallel 

divide-and-conquer algorithms. In Figure 4.4, the recursive case of the parallel quicksort 

implementation uses Parallel.Do 

13 so that the two subranges can be sorted in parallel.  

1 static void ParQuickSort<T>(T[] dom, int lo, int hi) 
2     where T : IComparable<T> 
3 { 
4     if (hi - lo <= Threshold) 
5         InsertionSort(dom, lo, hi); 
6      
7     int pivot = Partition(dom, lo, hi); 
8     Parallel.Do( 
9         delegate { ParQuickSort(dom, lo, pivot - 1); }, 
10         delegate { ParQuickSort(dom, pivot + 1, hi); } 
11     ); 
12 } 

Figure 4.4. Parallel quicksort using fork–join pattern. Copied from Leijen et al. [8]. 

We generalize this behaviour to be applicable across all D&C algorithms implemented using 

our skeleton; a condensed version of our implementation is given in Figure 4.5. In the 

recursive case, the parent task splits the problem into subproblems, spawns subtasks for 

processing each subproblem, collects their respective subresults, and finally merges them. 

 

                                                           
 

13
   The Parallel.Do method has been renamed to Parallel.Invoke in the official release of TPL. 

http://msdn.microsoft.com/en-us/library/system.threading.tasks.parallel.invoke.aspx
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1 public Task<TResult> Input(TParam problem, int level = 1) 
2 { 
3     // Spawn a new task for processing the current problem. 
4     return TaskFactory.StartNew(() => Process(problem, level)); 
5 } 
6      
7 protected virtual TResult Process(TParam problem, int level) 
8 { 
9     // Check whether to split the current problem. 
10     if (ShouldSplit(problem, level)) 
11     { 
12         // Split the current problem into subproblems. 
13         TParam[] subProblems = Split(problem, level); 
14          
15         // Process each subproblem recursively (using new subtasks). 
16         var subTasks = new Task<TResult>[subProblems.Length]; 
17         for (int i = 0; i < subProblems.Length; ++i) 
18             subTasks[i] = Input(subProblems[i], level + 1); 
19          
20         // Collect the subresult from each subtask. 
21         var subResults = new TResult[subProblems.Length]; 
22         for (int i = 0; i < subProblems.Length; ++i) 
23             subResults[i] = subTasks[i].Result; 
24          
25         // Merge subresults to obtain the current result. 
26         return Merge(subResults, level); 
27     } 
28     else 
29     { 
30         // Execute muscle to obtain result directly for current problem. 
31         return ExecuteMuscle(problem, level); 
32     } 
33 } 

Figure 4.5. Task execution in D&C skeleton using fork–join parallelism 

Unfortunately, this approach has a fundamental design shortcoming. In both above 

implementations, each recursive step incurs a synchronization barrier (inherently in the 

Parallel.Do call or aggregately when reading the subtasks’ Result property), causing the 

parent task to block (as if calling WaitAll) until all its subtasks complete. Since task 

scheduling is not pre-emptive, the blocked parent task does not relinquish control of the 

thread it is executing on, but holds on to it, keeping it unavailable for processing other 

tasks. 

A possible workaround would be to process one of the subproblems directly within the 

parent task (thereby reducing the number of spawned subtasks by one at each recursive 

step). However, this introduces inconsistency into the design [34], and hinders the task 

scheduler’s flexibility due to the parent task becoming extensively long-lived, preventing 

reallocation to another thread for the duration of its execution. 

http://msdn.microsoft.com/en-us/library/dd321468.aspx
http://msdn.microsoft.com/en-us/library/dd270695.aspx
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In the spirit of the aforementioned optimization, TPL introduces the notion of “task 

inlining”: 

14 If the current thread is instructed to wait on a task that has not yet started being 

executed by another thread, then the scheduler may allow it to execute the said task 

directly, rather than block. However, the behaviour is nondeterministic, since the parent 

thread could be outraced by thief threads stealing its tasks, consequently being constrained 

to block. Additionally, even if inlining is successful and the parent thread gets to execute a 

subtask, it might subsequently still need to block until all the other subtasks complete too. 

This imposed synchronicity is particularly problematic for unbalanced D&C algorithms, such 

as quicksort.    

The default thread pool in the .NET Framework mitigates the issue by firing up new worker 

threads to compensate whenever a task blocks or takes too long to complete.15 Apart from 

incurring thread overheads, this approach is unsuitable for our scheduler, since most of our 

tests require a fixed degree of concurrency. Such bounded schedulers are susceptible to 

starvation, with all threads but one getting blocked (despite the availability of abundant 

pending tasks). In fact, it was this performance degeneration that spurred us to come up 

with a better execution pattern. 

4.2.2 Asynchronous Execution 

The solution we devised was to switch the recursion from a blocking operation to an 

asynchronous one. Whenever a parent task spawns subtasks, it attaches a continuation to 

each subtask, and then finishes, freeing up its thread for other tasks. Within the 

continuation, each subtask checks whether it is the last to complete from among its siblings 

(by performing an atomic decrement on a shared counter initialized to the number of 

subtasks); if it is the last, it spawns a new task constituting the merge operation for the 

parent level of the recursion. 

 

                                                           
 

14
  Refer to the “Task.Wait and ‘Inlining’ ” article by Stephen Toub for an explanation. 

15
  Thread injection has been mentioned in Section 3.1.2 (p. 23); refer to the “.NET CLR Thread Pool 

Internals” article by Aviad Ezra for an elaboration. 

http://msdn.microsoft.com/en-us/library/ee372288.aspx
http://msdn.microsoft.com/en-us/library/1z4b2e5y.aspx
http://blogs.msdn.com/b/pfxteam/archive/2009/10/15/9907713.aspx
http://aviadezra.blogspot.co.uk/2009/06/net-clr-thread-pool-work.html
http://aviadezra.blogspot.co.uk/2009/06/net-clr-thread-pool-work.html
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Figure 4.6. Blocking vs. asynchronous execution of D&C recursion 

A condensed version of our asynchronous implementation is given in Figure 4.7 (below). Its 

logic is modelled after the internal implementation of the TaskFactory.ContinueWhenAll 

method in TPL.16 An essential component is the TaskCompletionSource, which acts as the 

producer side for a task whose state can be controlled explicitly (rather than through the 

scheduler).17  The TaskCompletionSource is signalled by the last subtask to complete, 

causing the merge task (which would be registered as its continuation) to get scheduled. 

Since all this behaviour is intrinsic to the TPL infrastructure, no thread-blocking 

synchronization is involved. 

 

                                                           
 

16
  We could not call this method directly since its implementation is buggy (prone to deadlock) 

under some versions of Mono. 

17
  Refer to “The Nature of TaskCompletionSource<TResult>” by Stephen Toub. 
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1 // Create a task source to indicate completion 
2 // when all subtasks collectively complete. 
3 var completionSource = new TaskCompletionSource<bool>(); 
4 int subTasksLeft = subProblems.Length; 
5   
6 // Register a continuation for each subtask. 
7 foreach (var subTask in subTasks) 
8     subTask.ContinueWith(_ => 
9     { 
10         // Atomically decrement the number of subtasks left, 
11         // and set the completion source if it was the last. 
12         if (Interlocked.Decrement(ref subTasksLeft) == 0) 
13             completionSource.SetResult(true); 
14     }); 
15   
16 // Register a continuation to the completion source, 
17 // so that the merge task is spawned when all subtasks complete. 
18 Task<TResult> mergeTask = completionSource.Task.ContinueWith(_ => 
19 { 
20     // Collect the subresult from each subtask. 
21     var subResults = new TResult[subProblems.Length]; 
22     for (int i = 0; i < subProblems.Length; ++i) 
23         subResults[i] = subTasks[i].Result; 
24   
25     // Merge subresults to obtain the current-level result. 
26     return Merge(subResults, level); 
27 }); 

Figure 4.7. Task execution in D&C skeleton using asynchronous parallelism (excerpt) 

A complication present in this design is its recursive treatment of futures. Since the Process 

method is now asynchronous, it returns as soon as it spawns its subtasks, without waiting 

for the recursive subcomputation to complete. Thus, it cannot return the subresult of its 

merge operation directly (TResult); rather, it must return a future representing the merge 

task itself (Task<TResult>).  

The recursive nature of D&C requires this notion of futures to be propagated across the 

recursion levels. At level  , the merge task must follow the collective completion of all its 

level     subtasks, whose merge tasks must, in turn, have followed all their respective 

level     subtasks, and so on. The merge tasks are not available immediately when the 

subtasks are spawned, but would be constructed dynamically as they execute. 

Thus, when the Input method spawns a subtask, it does not acquire a Task<TResult>, but a 

Task<Task<TResult>> representing a future that will eventually give the merge task. This 

nested asynchronicity quickly becomes unwieldy when ascending back up the recursion 

graph, so we unravel it at each step using TaskExtensions.Unwrap, as shown in Figure 4.8. 

http://msdn.microsoft.com/en-us/library/dd781129.aspx
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This nifty method converts a Task<Task<TResult>> into a Task<TResult> by creating a 

proxy task that returns the result once the inner task completes.18 

1 public Task<TResult> Input(TParam problem, int level = 1) 
2 { 
3     // Spawn a new task for processing the current problem. 
4     Task<Task<TResult>> outerTask = TaskFactory.StartNew(() =>  
5         this.Process(problem, level)); 
6      
7     // Create a proxy task that unwraps the inner task. 
8     return outerTask.Unwrap(); 
9 } 

Figure 4.8. Unravelling nested asynchronicity at each recursive step 

The asynchronous implementation yielded significant performance gains over the fork–join 

pattern, approaching twofold speedups for highly-scalable programs. Furthermore, it 

improved their performances’ consistency (reducing variance), since the nondeterministic 

risk of blocking is eliminated. 

  

 

                                                           
 

18
  Refer to the “How to: Unwrap a Nested Task” article on MSDN for more details. The Unwrap 

method may be internally implemented using a TaskCompletionSource, as is done in .NET 4.0 

and Mono (per its TaskExtensionsImpl class). 

http://msdn.microsoft.com/en-us/library/ee795275.aspx
https://github.com/mono/mono/blob/1b92a4148cf4973d49f3b1772acbd2752cfea115/mcs/class/corlib/System.Threading.Tasks/TaskExtensionsImpl.cs
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4.3 Program Hierarchy 

Now that we have explained how our D&C skeleton runs, we shall discuss how we built our 

parallel programs atop it, as outlined in Figure 4.9. 

 

Figure 4.9. Class hierarchy for the D&C skeleton and programs 

DivConBase, whose implementation we have been discussing so far, represents the core 

D&C skeleton, embodying the logic for executing arbitrary D&C algorithms as a task graph 

on a specified scheduler. 

TestableDivCon introduces some convenient functionality for our tests, such as the 

Initialize abstract method, which is to be overridden by the parallel programs for 

initializing problem instances with random data. Its Time method may be called to initialize 

such a random problem and measure its execution time. The BranchingFactor property 

should be overridden to give the appropriate value according to the D&C algorithm.  
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GranularDivCon introduces the notion of granularity. Concrete programs are expected to 

implement the GetProblemSize method for indicating the size of a specified problem (or 

subproblem) instance, with the semantics of such a measure being left up to the program 

itself (as long as its values are numeric). For example, sorting algorithms can return the 

number of elements falling under the current subrange. Similarly, concrete programs 

should set the ProblemSize property to indicate the size of their overall problem (whose 

data may be generated randomly during initialization), whilst Granularity should give the 

target subproblem size at which to stop splitting (thereupon proceeding to compute the 

subproblem directly through the sequential execute muscle). In return for programs 

supplying this context, our D&C framework can support richer interaction with their 

execution, as discussed in Section 4.5.2 (p. 50). 

ElementsBase serves as the basis for parallel programs operating over large collections of 

elements, such as map–reduce and sorting algorithms. It implements the Initialize 

method to generate an array of random numbers whose length corresponds to 

ProblemSize; this array is stored in its SourceElements property. ElementsBase fixes the 

TParam type to be Range, which contains Min and Max indexes representing the bounds of 

the current range (or subrange). It also provides a nominal implementation of the Split 

method that takes a range and divides it evenly into a sequence of subranges, whose 

number is equal to the BranchingFactor value. For example, with a branching factor of 4, 

the range         would be split into       ,        ,        , and         . 

MapReduce may be seen as a specialization of the D&C skeleton to handle map–reduce 

programs (and thereby qualifying as a skeleton in its own right). It defines its own set of 

abstract methods to be overridden by concrete programs, as presented in Figure 4.10, with 

the Reduce operation assumed to be associative. However, it fully implements all of the 

D&C skeleton’s methods to channel the computation to Map and Reduce. (For more details 

and a concrete example, refer to Section 4.4.1, p. 42.) 

1 public abstract partial class MapReduce<TElement, TResult>  
2     : ElementsBase<TElement, TResult> 
3 { 
4     protected abstract TResult Map(TElement element); 
5     protected abstract TResult Reduce(TResult res1, TResult res2); 
6     protected virtual  TResult Reduce(TResult[] results) { /* ... */ } 
7 } 

Figure 4.10. Map–reduce methods for functional parameterization 
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SortBase, the base class for sorting algorithms, introduces the SortedElements property. 

For in-place sorting implementations, this would reference the very same array as 

SourceElements; otherwise, it is initialized to an empty array of the same length, to be 

populated with the sorted result. SortBase implements ExecuteMuscle to call the .NET 

built-in Array.Sort method for handling the base case of the recursion (like Skandium uses 

Java’s Arrays.sort in the base case of its parallel quicksort [25]). 

4.4 Sample Programs 

We shall now mention the repertoire of parallel programs that we implemented as 

instances of our D&C skeleton. After consulting Tsogkas [48] for an analysis of the 

characteristics of some D&C algorithms, we handpicked a selection that is well-suited for 

the scope of our experiments; namely, compute-intensive applications spanning a good 

range of scalabilities. 

 

Figure 4.11. Colour convention for the D&C diagrams presented in the rest of this section 
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4.4.1 Sum of Squares 

The sum-of-squares program is a simple map–reduce instance, where Map is a squaring 

operation (  ) and Reduce is a summation ( ). By default, it initializes an array of 

134,217,728 integers in memory (equivalent to 512 MB), populated with random values 

ranging from 0 to 1024. (The exclusive upper bound is kept low so as to avoid integer 

overflows.)  

 

Figure 4.12. Sample D&C execution of sum-of-squares 

Figure 4.12 shows a sample execution of this program. The split operation just divides the 

current range according to the branching factor. At the base case, the map operation 

(squaring) is iteratively applied over all elements belonging to the current subrange, with 
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their results aggregated using the reduce operation (summation). Finally, the merge 

operation again applies the reduce operation to aggregate the subresults from its subtasks. 

Map–reduce programs allow their branching factor to be altered to an arbitrary value. For 

example, the branching factor may be set to correspond to the number of logical cores on 

the machine, so that full concurrency would be achieved after just one split (as shown in 

Figure 4.13 for the next program). However, since the split and merge operations are 

computationally trivial, the performance gain is negligible. 

The data parallelism offered by map–reduce programs such as sum-of-squares is 

embarrassingly parallel, yielding near-linear speedups even on manycore machines, 

thereby belonging to the top end of our scalability spectrum. 

4.4.2 Monte Carlo Pi 

The MonteCarloPi program uses a Monte Carlo simulation to estimate the value for   (pi).19  

Assume a circle whose radius,  , is 0.5 units, inscribed within a square of length,  , 1. Using 

standard definitions, we know that: 

                 

                

By combining the two equations and substituting our dimensions, we can compute the ratio 

of their areas,  , as: 

        
          

          
       

   

  
       

       

    
       

 

 
 

Conversely, if   is known, we could compute   as: 

            

We therefore employ Monte Carlo methods to estimate this ratio by sampling a large 

number of random points within the square, and testing how many of them fall within the 

 

                                                           
 

19
  This explanation is adapted from the “Estimating Pi with Monte Carlo Methods” tutorial by 

Joe Freeman. 

http://joefreeman.co.uk/blog/2009/07/estimating-pi-with-monte-carlo-methods/
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circle using Pythagoras’ theorem. For example, if 785,113 out of 1,000,000 random points 

fall within the circle, then we could estimate   as: 

                    
       

         
            

 

Figure 4.13. Sample D&C execution of Monte Carlo Pi 

This computation is trivial to parallelize. The program does not require any initialization; the 

initial problem is defined to be the number of random points to be sampled, and set to 

1,073,741,824 (being    ) for our experiments. In the split operation, this number is 

divided evenly among the subtasks. Like in SumOfSquares, the branching factor may be set 

to an arbitrary value; in the example on Figure 4.13, we set this to 4, equivalent to the 

number of logical cores on that machine. In the base case, the Monte Carlo simulation is 

performed for the given number of points, and the number of in-circle points returned as 

the subresult. In the merge operation, the subresults are summed to obtain the total 

number of in-circle points overall. 
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4.4.3 Strassen Matrix Multiplication 

The Strassen algorithm for matrix multiplication [49] permits large square matrices (of 

order  ) to be multiplied with an asymptotic complexity of  (      ), which is 

approximately        , and therefore improves upon the       complexity of the standard 

matrix multiplication algorithm. It partitions each of the given pair of matrices,   and  , 

into four submatrices of order 
 

 
, denoted as     –    and     –   . It subsequently performs 

a set of 7 subcomputations on these,  –    , each involving submatrix addition and 

multiplication: 

     (         )   (         ) 

      (         )        

              (         ) 

             (         ) 

                        

      (         )   (         ) 

       (         )   (         ) 

The algorithm’s suitability for the D&C skeleton arises from this submatrix multiplication, 

which may be performed recursively, using the Strassen algorithm again. (The branching 

factor of this program is therefore 7.) Once all subcomputations have completed, the result 

matrix,  , may be computed through its partitions: 

                   

              

              

                    

The execution flow is shown in Figure 4.14 (below). Both the split and the merge tasks need 

to perform submatrix additions (since, due to the D&C skeleton design, the subtasks can 

only take care of the recursive multiplications). Submatrix additions have an algorithmic 

complexity of      . Despite being substantially lighter than the multiplications’         or 

     , these still incur a computational overhead, meaning that this parallel program will 

not be as scalable as the previous two. 
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Figure 4.14. Sample D&C execution of Strassen matrix multiplication.  

Only a single split level is shown here for simplicity. In practice, most runs would use 2 or 3 levels, 

resulting in 49 or 343 execute muscles respectively. 

For our tests, we initialize our program with a pair of square matrices of order 1536, 

thereby each having 2,359,296 elements (9 MB), randomly populated with values 

between 0 and 1024 (exclusive). 

4.4.4 Quicksort 

Quicksort [50] is a sorting algorithm that, on average, can sort   items with          

comparisons. Its recursive definition makes it a natural D&C candidate. In the split 

operation, it picks a pivot value, and reorders the array such that all elements smaller than 

the pivot are placed together at its front, whilst all elements larger than the pivot are 

placed together at its rear. (We arbitrarily lump elements equal to the pivot with the latter 

group.) Subsequently, the two subarrays are sorted recursively. Once a subarray’s length 

falls below a threshold (being the target granularity), the recursion is stopped and the base 

case engaged, which calls .NET’s sequential Array.Sort method (as mentioned on p. 41). 

The merge operation does nothing. 
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Figure 4.15. Sample D&C execution of quicksort. In this example, each pivot value (shown in bold)  

is chosen arbitrarily from among the first few elements of the subarray. 

Quicksort’s amenability to parallelization comes from the disjoint quality of the subarrays 

resulting from each split, permitting them to be processed independently. However, each 

split operation performs a sequential sweep over the   elements in its array (or subarray), 

entailing      comparisons. Consequently, the parallelism is unravelled gradually, with the 

level   split operation(s) being processed over      tasks (i.e.          ). This limits the 

scalability of the program, since several processors would remain unutilized for the early 

levels of the recursion. 

For our tests, we initialize an array of 67,108,864 integers (256 MB), randomly populated 

with non-negative 32-bit integer values. Quicksort is our only parallel program that exhibits 

unbalanced behaviour, since the sizes of – and, therefore, work associated with – the 

subarrays may vary substantially, depending on the choice of the pivot value. To minimize 

this misbalance, at each split, we sample the first 100 elements of the subarray and pick 
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their median as the pivot. (Systematic sampling, which surveys elements spread throughout 

the subarray, might have yielded sturdier pivot choices, but incurs heavy memory 

overheads since, for large subarrays, each sample would incur a cache miss.) 

4.4.5 Mergesort 

Mergesort is another D&C sorting algorithm that is similar to quicksort, but performs its 

work in the merge phase instead of the split phase. In the split phase, it just divides the 

range of elements evenly among its subtasks. In the base case, it also uses .NET’s sequential 

Array.Sort method to sort the elements along the subrange. Finally, in the merge phase, it 

sweeps sequentially along the   elements from the pair of independently-sorted subranges 

and rewrites them in-order, incurring      comparisons.  

 

Figure 4.16. Sample D&C execution of mergesort. Unlike quicksort,  

this D&C sorting algorithm always produces size-balanced subtasks. 
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Mergesort suffers from the same processor underutilization issue as quicksort, since the 

merge operations at the final levels of the recursive ascent may only be performed through 

a limited number of tasks. Furthermore, mergesort is an out-of-place algorithm (as opposed 

to the in-place quicksort), meaning it is expected to perform slower. For our tests, we use 

the same problem size as for quicksort. 

4.5 Common Design Considerations 

4.5.1 Program Reinitialization 

One of our major concerns for the cyclic multiprogramming performance tests (discussed in 

Section 5.4.1, p. 76) was the issue of reinitializing each program’s problem data between 

one run and the next. Under these tests, each program is reinitialized and restarted 

immediately upon completing (whilst the others are still executing). However, given that 

several of our programs work against large memory arrays (256 MB for sorting; 512 MB for 

map–reduce), reinitializing a program’s data whilst other programs are executing could lead 

to substantial negative interference, especially on the shared off-chip memory bandwidth, 

if the programs happen to be executing on cores belonging to the same processor chip [51].  

To avoid this, we redesigned our system to eliminate the need for reinitialization by reusing 

the same data across consecutive runs of the same program instance. The extent of illicit 

performance gains arising from such data reuse (such as from temporal locality or warmed-

up branch predictors) is limited, due to the large sizes and randomized nature of the data 

arrays.  

However, two of our programs, quicksort and mergesort, were designed to overwrite their 

data while running. A sorting algorithm executed over pre-sorted data completes in 

drastically less time, even if the number of comparisons performed is identical, due to 

highly-successful branch prediction.20 Thus, we extended our sorting programs to support 

non-destructive execution by writing their results to a distinct array, rather than 

overwriting the source. By integrating the “copying” into the algorithm itself, the overheads 

 

                                                           
 

20
  Refer to the StackOverflow question “Why is processing a sorted array faster than an unsorted 

array?” and the detailed explanation given in its accepted answer for a fascinating discussion of 

this behaviour. 

http://stackoverflow.com/q/11227809/1149773
http://stackoverflow.com/q/11227809/1149773
http://stackoverflow.com/a/11227902/1149773
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are minimized: In mergesort, the copying is fully parallelized as part of the execute muscle, 

whilst in quicksort, it is performed organically within the first-level split (whilst the 

elements are being split based on the pivot). On 64 cores, the performance loss for 

quicksort is merely 3%, whilst for mergesort, the non-destructive version surprisingly 

achieves a gain of 3%. 

4.5.2 Granularity 

In Section 4.3 (p. 40), we mentioned that the GranularDivCon base class introduces the 

notion of granularity, thereby permitting our framework to interact with the D&C programs 

by acquiring awareness of their problem sizes. A rudimentary benefit is that it can provide a 

standard implementation of the ShouldSplit method, as shown in Figure 4.17. 

1 public abstract partial class GranularDivCon<TParam, TResult>  
2     : TestableDivCon<TParam, TResult> 
3 { 
4     public long ProblemSize { get; set; } 
5     public long Granularity { get; set; } 
6      
7     protected abstract long GetProblemSize(TParam problem); 
8      
9     protected override bool ShouldSplit(TParam problem, int level) 
10     { 
11         return GetProblemSize(problem) > Granularity; 
12     } 
13 } 

Figure 4.17. Main components of the GranularDivCon class 

ShouldSplit may still be overridden by the concrete programs to provide more restrictive 

behaviour. For example, StrassenMultiply ceases to be efficient if the orders of the 

matrices drop below a certain threshold, making it preferable to stop splitting (and switch 

to standard matrix multiplication) before this happens. 

The GranularDivCon class also allows our framework to trivially create sequential instances 

of our D&C programs, by setting their Granularity to be equal to their ProblemSize 

(representing the overall problem size). This way, their first (and only) invocation of 

ShouldSplit would return false, causing the D&C skeleton to proceed to compute the 

entire problem directly through a single ExecuteMuscle call (without any Split or Merge 

operations). 
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Another benefit of the GranularDivCon design is that our system can heuristically compute 

a suitable value of Granularity for parallel systems, alleviating this decision from the 

application developer. Under the current implementation, the system sets this value such 

that it results in a number of execute muscles that is approximately equal to a small 

multiple of the number of logical cores on the machine. Campbell et al. [34] recommend 

16 tasks per core for quicksort, to compensate for the inherent load-imbalance among its 

subtasks. However, given our improved pivot-selection heuristic in quicksort, as well as the 

better load-balance in the other programs, we found that good performances could be 

achieved even when using a target of just 4 execution muscles per core. 

For D&C programs whose split operation reduces the problem size by the same factor as 

the branching factor, the granularity is straightforward to compute: An approximate target 

of   execute muscles may be achieved by setting the granularity to   ⁄  the overall problem 

size. Among our programs, the only exception is the Strassen multiplication, whose split 

operation reduces the problem size by a factor of 4 (since each submatrix has   ⁄  the 

number of elements of its parent matrix), despite the branching factor being 7. Thus, a 

target of   execution muscles requires the granularity to be set to  
        ⁄  the overall 

problem size.21 

The above computation is an approximation only in the case of D&C algorithms whose split 

operation may produce unbalanced subproblems – namely, quicksort. Instead of 

granularity, one could alternatively have used the recursion depth as the basis of the split 

condition. The second parameter of the ShouldSplit method provides the current 

recursion level; by comparing this against a target recursion depth, one could constrain the 

D&C program to produce an exact number of execute muscles (provided that this number is 

a power of the branching factor). Specifically, for a program with a branching factor of  , a 

total of   execute muscles may be produced by splitting until a recursion depth of      . 

  

 

                                                           
 

21
  This result is mathematically related to the algorithmic complexity of the Strassen algorithm, 

which is  (      ) [49]. Note that Strassen assumes   to be the order of the matrix, rather than 

its number of elements (which would be the order squared). 
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The issue with using the recursion depth as the split condition is that, unlike granularity, it 

does not even out load misbalance. Figure 4.18 (below) shows how the two strategies 

influence the division of a problem of size 1000 into a target of 4 execute muscles. A level-

based approach would split until a recursion depth of 2 to produce exactly 4 muscles, 

whilst a granularity-based approach would split until the subproblem size is 250. In our 

example, the latter approach produces 5 muscles (one more than the target); however, 

their subproblem sizes vary by a standard deviation of merely 27, as opposed to 191 for 

the level-based approach. 

 

Figure 4.18. Delimiting the split phase based on recursion depth (top) versus granularity (bottom). 

The tasks are drawn to-scale with respect to their subproblem sizes; however, this should not be 

construed as representative of their computational requirements, since the split operation is 

typically substantially cheaper to process than the execute muscle for a given subproblem size.  

Note that none of our D&C programs suffer from such extreme misbalance in practice. 
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4.5.3 Nested Parallelism 

In our programs, we have assumed that the split and merge operations of our D&C 

programs should be sequential. The reasons behind this decision were threefold: It 

conforms to the definition of the D&C skeleton muscles in Skandium [48]; it simplifies the 

design of our programs; and it makes their performances easier to analyse. However, as 

mentioned briefly in Section 4.1.4 (p. 32), we acknowledge that better scalabilities might be 

possible by parallelizing these operations as well. 
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Chapter 5: Scheduler Designs 

The previous chapter explained how our D&C skeleton empowers programs to leverage its 

structured parallelism to transparently generate task graphs. This fulfils the first 

parallelization challenge presented in Section 2.2 (p. 9): problem decomposition. Now, we 

proceed to address the next challenge: the efficient distribution of tasks onto processors 

for concurrent execution. 

We open this chapter by explaining how we extend the structure of the traditional work-

stealing task scheduler to support explicit processor affinity through thread pinning. In 

Section 5.2, we present a number of multiprogramming schemes that permit concurrently-

executing programs to feed their tasks into one or more task schedulers, showing how a 

shared scheduler would eliminate the need for thread oversubscription. Section 5.3 is the 

most important part of our system design, since it presents the novel approach through 

which we reconcile task parallelism with processor partitioning, discussing both mechanism 

and policy. Finally, Section 5.4 gives an overview of the principal tests that we ran to 

evaluate our system, whose results will be presented towards the end of Chapter 7. 
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5.1 Scheduler Hierarchy 

Figure 5.1 extends the class hierarchy presented in Figure 3.3 (p. 25) to introduce the two 

task schedulers of our system.  

 

Figure 5.1. Class diagram showing the composition of our task schedulers.  

The one-to-one correspondence between affine threads and processors is an  

imposition of our system; in practice, the relationship may be many-to-many. 
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5.1.1 Free Task Scheduler 

Our FreeTaskScheduler is a lightweight wrapper over the WorkStealingTaskScheduler 

from the Microsoft Parallel Programming Samples (described in Section 3.1.3, p. 24). The 

name was chosen to signify the liberty granted to the operating system’s thread scheduler 

for allocating the worker threads onto the available processors (as opposed to the 

AffinityTaskScheduler discussed in the next section). Due to inheritance, its structure is 

the same as that of WorkStealingTaskScheduler (presented in Figure 3.4, p. 26). 

We introduce some minor changes to improve the consistency of the scheduler’s behaviour 

for our tests. Specifically, we alter its default number of worker threads to correspond to 

the number of logical cores on the machine; we suppress initialization of new dedicated 

threads for tasks marked as LongRunning; and we prohibit task inlining for external threads. 

The latter change was crucial for getting sensible measurements of execution times over 

limited concurrencies – with inlining permitted, some tasks would get executed on the main 

thread itself, thereby illicitly inflating the actual degree of concurrency. 

5.1.2 Affinity Task Scheduler 

AffinityTaskScheduler extends FreeTaskScheduler such that, rather than accepting a 

plain (numeric) concurrency level, its constructor can take a set of specific processor 

identifiers. For each specified processor, AffinityTaskScheduler initializes an 

AffineThread wrapper that creates a worker thread and pins it to the said processor, as 

shown in Figure 5.2 (below). 

The .NET Framework provides built-in support for setting processor affinity for threads 

through its ProcessorAffinity interface; 

22 however, this functionality is not implemented 

in Mono. Instead, we use Platform Invocation Services (P/Invoke), which play a similar role 

to the Java Native Interface (JNI),23 to perform platform-specific system calls for setting 

affinity. Specifically, we use SetThreadAffinityMask on Windows and sched_setaffinity 

on Linux, structuring our class design to dynamically choose the appropriate call for the 

current platform. 

 

                                                           
 

22
  Refer to the “Running .NET threads on selected processor cores” tutorial by Lenard Gunda. 

23
  Refer to the ThreadAffinity Java class, implemented by Ruslan Cheremin, for sample JNI code. 

http://code.msdn.microsoft.com/ParExtSamples
http://msdn.microsoft.com/en-us/library/system.threading.tasks.taskcreationoptions.aspx
http://msdn.microsoft.com/en-us/library/dd449178.aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.processthread.processoraffinity.aspx
http://msdn.microsoft.com/en-us/library/aa288468.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms686247.aspx
http://linux.die.net/man/2/sched_setaffinity
http://rebuildall.umbraworks.net/2010/03/08/Running_NET_threads_on_selected_processor_cores
http://trac.assembla.com/Behemoth/browser/Tests/JAVA/test/src/main/java/test/threads/ThreadAffinity.java
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Figure 5.2. Structure of the affinity task scheduler. This scheduler builds on top of the  

work-stealing task scheduler (whose structure was presented in Figure 3.4, p. 26),  

inheriting its global queue and per-thread local queues. However, the  

affinity task scheduler pins each worker thread to a distinct core. 

5.1.3 Contiguous vs. Dispersed Allocation 

Whenever our system needs to allocate a subset of any   processors to an affinity task 

scheduler, it defaults to assuming a contiguous allocation (e.g. processors   to  ). Such 

processor proximity can improve the performance of a parallel program due to constructive 

interference (as discussed in Section 2.3.1, p. 16). However, cores residing on the same chip 

share its off-chip bandwidth, which can become a performance bottleneck for parallel 

programs with high memory access demands [51]. In order to investigate the extent of this 

issue, we devised an alternate allocation strategy where the worker threads of the affinity 

task scheduler are pinned to a dispersed subset of the cores, as depicted in Figure 5.3 

(below). (Note that this allocation strategy is only employed for the stand-alone experiment 

whose results are presented in Section 7.2.1, p. 86. For all other scenarios, contiguous 

allocations should be assumed.) 
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Figure 5.3. Contiguous vs. dispersed allocation of 8 pinned threads over  

a 64-core machine comprised of four 16-core processor chips 

5.2 Multiprogramming Schemes 

Since our parallel programs are implemented as instances of the D&C skeleton, they need 

to feed into a task scheduler before their computations may be delegated onto worker 

threads. So far, our scheduling discussions have been agnostic of the program workload, 

simply assuming that the programs would somehow have their top-level tasks inserted into 

the appropriate scheduler’s global queue. We shall now proceed to describe a number of 

multiprogramming schemes we devised, each of which shows how programs may be 

serviced by one or multiple task schedulers.  
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5.2.1 Oversubscribed Free Multiprogramming 

As mentioned in Section 2.3.1 (p. 16), parallel applications that have no awareness of their 

system’s multiprogramming context would typically attempt to individually maximize their 

utilization of the machine’s multiprocessing capabilities by initializing one thread (or more) 

per logical core. This is particularly the case for task-parallel libraries, such as Skandium [25] 

and TPL [34], which initialize such a pool of worker threads for servicing their task queues. 

Thus, in a multiprogramming scenario, some processors would get oversubscribed with 

multiple threads from the various programs (see Figure 5.4), leaving it up to the operating 

system to schedule these threads efficiently using round-robin time-slicing. 

 

Figure 5.4. Oversubscription by multithreaded applications. For simplicity, this diagram shows each 

processor running exactly one thread from each application. In practice, most applications do not pin 

their threads, meaning that the thread scheduler is free to migrate them into arrangements different 

from the above. 

We shall adopt this behaviour as the baseline against which to compare our optimizing 

scheduler (discussed later) for tests involving multiprogrammed workloads. We could 

simulate it either by running each program as a separate process, or by instantiating a 

distinct task scheduler for each program instance, as illustrated in Figure 5.5 (below). We 

picked the latter approach, since it allows us to run our programs within the same virtual 

address space, simplifying the implementation of our tests. 
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Figure 5.5. Oversubscription by task-parallel programs feeding dedicated task schedulers 

 

 

Figure 5.6. Oversubscribed free multiprogramming. The thread scheduler is responsible for 

distributing all the worker threads (from the various task schedulers’ respective thread pools)  

over the available processors. 
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Under our “oversubscribed free multiprogramming” scheme, a distinct FreeTaskScheduler 

is created per program, with each task scheduler initializing a free thread per core, as 

shown in Figure 5.6 (above). Each program issues tasks to its own task scheduler. Since the 

threads are not pinned, they can be migrated across processors by the operating system’s 

thread scheduler, according to its own scheduling strategy. 

5.2.2 Oversubscribed Pinned Multiprogramming 

Under the “oversubscribed pinned multiprogramming” scheme, a distinct 

AffinityTaskScheduler is created per program, with each task scheduler initializing a 

pinned thread on each core, as shown in Figure 5.7. Thus, each core is oversubscribed 

exactly per the degree of multiprogramming. 

This scheme is identical to free multiprogramming, except that it inhibits any thread 

migration by the operating system’s thread scheduler, and may therefore be used to 

comparatively measure the performance benefit offered by the latter.  

 

Figure 5.7. Oversubscribed pinned multiprogramming 
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5.2.3 Shared-Scheduler Multiprogramming 

A drawback of thread oversubscription is that it incurs performance penalties whenever the 

thread scheduler needs to context-switch among a processor’s threads, as discussed in 

Section 2.3 (p. 15). If the oversubscribed threads belong to different programs, they would 

not share any data. Rather, they would suffer from destructive interference due to their 

contention over the limited cache space, causing each other’s data to be evicted, further 

exacerbating the cost of the context switch due to the subsequent cache misses. 

This behaviour is undesirable, especially when one considers that load-balancing is already 

provided for by the work-stealing task scheduler (residing further up in the system runtime 

architecture stack). Thus, rather than creating a distinct task scheduler with a plethora of 

threads per program, we could improve performance by creating a single task scheduler 

that is shared among all programs in the multiprogram workload. In practice, this simply 

means that all the D&C skeleton instances representing our programs would insert their 

top-level tasks into the same global queue, wherefrom they may get picked and distributed 

among worker threads per the scheduling logic of the task scheduler. 

 

Figure 5.8. Programs feeding a shared task scheduler 

Thus, in the “shared-scheduler multiprogramming” scheme, a single 

AffinityTaskScheduler is created for the entire test, initializing a single pinned thread on 

each core. Each program issues tasks to this same shared task scheduler, as shown in  

Figure 5.8 and Figure 5.9. 
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Figure 5.9. Shared-scheduler multiprogramming scheme 

5.2.4 Default-Scheduler Multiprogramming  

In the “default-scheduler multiprogramming” scheme, all programs issue their tasks to the 

default task scheduler provided for TPL by the .NET Framework or Mono (described in 

Section 3.1.2, p. 22). Since this default scheduler is designed to run as a singleton, all 

programs would be issuing their tasks to the same single scheduler. Thus, this scheme is 

similar to the shared-scheduler scheme discussed in the previous section, except that the 

default task scheduler’s implementation is likely to be better optimized, does not perform 

thread pinning, and has the liberty of employing thread injection to gradually spawn new 

worker threads (thereby oversubscribing some processors) when it deems fits.  
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5.3 Multiprogramming Task Schedulers 

In Section 2.3.1 (p. 15), we discussed the performance benefits that may be reaped from 

pinning each program’s threads onto a distinct subset of the machine’s processors. In the 

case of task parallelism or structured parallelism, programs do not have direct control over 

the threads executing their computations; rather, these would be managed by the 

underlying task scheduler, which commands a pool of worker threads for servicing its task 

queue(s), as had been depicted in Figure 2.3 (p. 12). 

5.3.1 Scheduler Partitioning 

The crux of our project concerns the reconciliation of task parallelism with processor 

partitioning, as illustrated in Figure 5.10. In doing so, we are transcending one level of 

abstraction from traditional research in the latter area, which typically only considers 

explicit thread parallelism [13].  

 

Figure 5.10. Reconciliation of task parallelism with processor partitioning. This diagram depicts a pair 

of D&C programs being executed as: spread across all processors (left); allocated to dedicated 

subsets of the processors (centre); and having their granularity adjusted (right). The latter 

optimization was a direction we explored early in our project, but decided not to pursue since its 

effects were either marginal or counterproductive, as reported in Section 7.1 (p. 81). 
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In its most basic form, task-parallel partitioning can be achieved by initializing a dedicated 

task scheduler for each program, with its worker threads pinned to a distinct subset (or 

“partition”) of the processors, as shown in Figure 5.11. 

 

Figure 5.11. Processors partitioned among task schedulers servicing distinct programs.  

In this example, the topmost program is allocated two processors,  

whilst the others are only allocated one processor each. 

Each task scheduler internally embodies work-stealing logic for enacting efficient load-

balancing among its allocated processors (see Figure 5.12 below). Therefore, there is no 

need for thread oversubscription, permitting us to avoid the overheads of thread context-

switching altogether. 

Section 5.1.2 (p. 56) mentioned that our AffinityTaskScheduler class can take a sequence 

of processor identifiers as a parameter to its constructor, allowing one to specify the exact 

set of processors over which it should spawn pinned worker threads. In a multiprogrammed 

context, this permits complete control over the allocation strategy, making it possible to 

experimentally attempt to identify the best-performing configuration for a given workload. 
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Figure 5.12. Task schedulers can enact processor partitioning by pinning their  

respective worker threads onto distinct subsets of the machine’s processors 

5.3.2 Scalability-Based Partitioning 

Whilst the flexibility offered through the explicit initialization of AffinityTaskScheduler 

instances is suitable for experimentation, we wanted to design a solution that could come 

up with performant allocations heuristically for any given multiprogram workload, 

insulating the application developers from the responsibility of this decision. We build on 

the direction taken by Sasaki et al. [13], as suggested in Section 2.3.2 (p. 17) and detailed in 

Section 3.2 (p. 28), and use program scalability as a metric for guiding the processor 

partitioning decisions. 

For this end, we construct a MultiProgramScheduler class (see Figure 5.13 below). This 

class takes an arbitrary multiprogram workload, and infers each program’s scalability to 

come up with a suitable allocation for the entire workload.  
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Sasaki et al. [13] populate a scalability table that records each program’s speedups on 

various numbers of cores, and subsequently apply a hill-climbing algorithm against it to 

arrive at the allocation that should minimize the workload’s average normalized turnaround 

time (ANTT). Our MultiProgramScheduler uses a simplified version of this heuristic that 

assumes each program’s scalability to be a single numeric value corresponding to its 

parallel speedup when executed in isolation over the entire machine. This way, it would 

only need to measure each program’s sequential execution time and its fully-parallel 

execution time (both averaged across multiple runs), and compute their ratio. We feel that 

this simplification was justified in our scenario since our programs scale much more cleanly 

than the PARSEC benchmark suite used by Sasaki et al. (For a graphical representation of 

our actual scalabilities, refer to Section 7.2, p. 84.) In particular, our speedups always 

increase monotonically with higher concurrencies, unlike PARSEC, which experiences 

slowdowns in some cases [13]. 

 

Figure 5.13. Statically-partitioned multiprogramming. The multiprogram scheduler internally 

initializes an affinity task scheduler for each program, with pinned worker threads  

spanning its allocated processor range. 
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Once all these measurements have been taken, the programs are respectively allocated a 

distinct contiguous range of processors whose size is proportionate to their scalability. For 

example, given a workload of programs that individually exhibit 23×, 13×, and 12× 

speedups on 64 cores, their multiprogrammed allocations would be 31, 17, and 16 cores 

respectively. The contiguous allocation boosts proximity for processors allocated to the 

same program, increasing the likelihood that they would share at least the L3 cache. 

MultiProgramScheduler does not derive from TaskScheduler, and therefore does not 

handle task scheduling directly. Instead, it internally creates an AffinityTaskScheduler for 

each program, initialized with worker threads pinned to its respective processor allocation, 

as shown in Figure 5.13 (above). This setup constitutes our “statically-partitioned 

multiprogramming” scheme. 

5.3.3 Dynamic Repartitioning 

The multiprogram scheduler implementation described so far only performs static 

partitioning, with processor allocations needing to be established before the multiprogram 

workload commences being executed. In practice, this approach is inadequate, not least 

because it cannot support the introduction of new programs into the workload after it has 

commenced. Additionally, programs that complete execution cannot have their processors 

reallocated to other ongoing programs, severely compromising the system’s overall 

performance as the said processors remain unutilized. Finally, programs undergo various 

phases along their execution, as observed by Sasaki et al. [13], making it unlikely that the 

initial allocation is suitable for the entirety of their execution. 

In order to address the above issues, we extend our MultiProgramScheduler’s design to 

support dynamic processor reallocation across the task schedulers dedicated to the various 

programs in the current workload. In our initial implementations, we worked at the thread 

level: A processor reallocation is performed by shutting down the pinned worker thread 

from the old task scheduler, and firing up a new one to replace it in the new task scheduler, 

as depicted in Figure 5.14 (below). 

The main appeal of this approach is the simplicity with which it builds upon the 

AffinityTaskScheduler architecture. However, it incurs thread creation overheads for 

each processor reallocation, succumbing to the same performance degradation that task 

parallelism was designed to avoid.  

http://msdn.microsoft.com/en-us/library/system.threading.tasks.taskscheduler.aspx


69 

 

Figure 5.14. Thread-based processor reallocation, showing the termination of the  

associated pinned thread from the centre scheduler’s pool, and the initialization  

of its replacement in the right scheduler’s pool. 

Therefore, we endeavoured to eliminate these threading overheads and come up with a 

mechanism that can reallocate processors efficiently, which brings us to the culmination of 

our system’s structural design. We take the novel step of decoupling the worker thread 

pool from the task queue superstructure that it services. Each program is still associated 

with a dedicated task scheduler that contains a global queue and per-thread local queues, 

ensuring that work-stealing remains localized per program. However, the thread pools are 

extricated from their fragmented distribution across the various task schedulers, and 

instead combined into a unified pool managed by the workload-wide 

MultiProgramScheduler, as shown in Figure 5.15 and Figure 5.16 (below). 
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Figure 5.15. Decoupling of thread pool from task queue superstructure.  

This design drastically simplifies the procedure for processor reallocation. 

 

 

Figure 5.16. Constitution of the multiprogram scheduler. This class diagram unites the D&C program 

hierarchy from Figure 4.9 (p. 39) with the scheduler hierarchy from Figure 5.1 (p. 55). Note that each 

affinity task scheduler now only aggregates (rather than composites) its affine threads. 
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Figure 5.16 (above) shows that the multiprogram scheduler initializes a single thread pool, 

with one worker thread pinned to each logical core. For each task-parallel program, it 

initializes a dedicated affinity task scheduler, which will dynamically be assigned a subset of 

the worker threads according to the scalability and task availability of its associated 

program. 

The assignment of worker threads to task schedulers is managed through a mapping 

maintained dynamically by the MultiProgramScheduler instance. Consequently, 

reallocating a processor from one program to another becomes a simple matter of 

reassigning its pinned thread across their respective task schedulers. This is a lightweight 

user-space operation, allowing threads to dart in and out of the various programs’ queue 

superstructures without incurring system-level overheads. 

 

Figure 5.17. Transitioning a worker thread across task schedulers. The procedure involves: 

① relegating pending tasks from the local queue back onto the old global queue;  

② reassigning the thread to the new task scheduler;  

③ picking up a task from the new global queue. 
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Understandably, this transition mandates a number of task-level considerations in order to 

be performed smoothly, without disrupting the task infrastructure’s expected behaviour. 

The most important restriction is that an active task cannot be migrated across threads 

once it has started executing, since this would otherwise violate “thread-affine 

abstractions”, such as critical sections (which are meant to be entered and exited on the 

same thread) [34]. Thus, we permit our worker thread to complete its current task before 

commencing the transition.  

Once the current task completes, the thread dumps any pending tasks from its local queue 

back into the global queue of its former program’s task scheduler, in order for them to 

subsequently be eventually picked up by the other threads still assigned to it. The 

transferred thread then assumes a new local queue associated with the target scheduler, 

and commences execution by fetching the first task from its global queue. This entire 

procedure is outlined in Figure 5.17 (above). (The new local queue would then be gradually 

populated with new locally-pushed tasks from the worker thread itself, per the usual logic 

originally depicted in Figure 3.5, p. 27.) 

5.3.4 Task-Availability-Based Repartitioning 

In the previous section, we have described our structural design for enabling dynamic 

processor repartitioning. In the spirit of the design principle promoting the separation of 

mechanism and policy, we have architected this functionality such that it can be invoked to 

accommodate the decisions made by any repartitioning strategy. We shall now proceed to 

describe the policy we enacted for dynamically inferring performant allocations. 

Due to the nature of the D&C skeleton, a program’s potential for parallelism is bounded by 

its current recursion depth (as was discussed in Section 4.1.2, p. 31). For example, a 

program executing its initial split or final merge would only have a single available task, and 

may therefore only utilize one processor. A program’s potential parallelism increases 

exponentially with each level of recursion, based on the program’s branching factor (which 

is 2 for quicksort and mergesort; 7 for Strassen multiplication; and any arbitrary number for 

map–reduce and Monte Carlo Pi). A simplified depiction of this effect is given in Figure 5.18 

(below). 
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Figure 5.18. D&C execution under static partitioning. Each colour represents a D&C program, whilst 

each coloured box represents the execution of one of its tasks. Uncoloured boxes indicate 

processors that remain unutilized due to the curbed parallelism inherent in D&C algorithms. 

 

 

Figure 5.19. D&C execution under task-availability-based repartitioning.  

All processor slots are now utilized. 
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Notwithstanding our focus on the D&C skeleton, we strived to come up with a policy that 

could adapt to task parallelism in general. As the basis of our policy, we still use the 

scalability measure described in Section 5.3.2 (p. 67); this gives us the base allocations. 

Then, at regular intervals – say, every 100 ms – our system queries each parallel program in 

the workload for its current number of available tasks. Using this collated information, the 

system can identify any processor allocations that exceed their program’s current number 

of available tasks, and reallocate them to other programs that have excess tasks available, 

thereby boosting overall utilization. Figure 5.19 (above) shows the effect of this policy on a 

cyclically-executed set of D&C programs. 

 

 

 

 

 

 
 

Speedup on 32 cores 15.18   10.43   9.71   

Scalability ratio 0.43   0.30   0.27   

Proportional share 13.75   9.45   8.80   

Base allocation  14    9    9   

              

Tasks available  18    1    12   

Capped allocation  14    1    9   

              

Active allocation (with updated score): 

 
            

Remaining:   8  14 (1.018)  1 (0.106)  9 (1.023) 

Remaining:   7  15 (1.091)  1 (0.106)  9 (1.023) 

Remaining:   6  15 (1.091)  1 (0.106)  10 (1.137) 

Remaining:   5  16 (1.163)  1 (0.106)  10 (1.137) 

Remaining:   4  16 (1.163)  1 (0.106)  11 (1.250) 

Remaining:   3  17 (1.236)  1 (0.106)  11 (1.250) 

Remaining:   2  18 (1.309)  1 (0.106)  11 (1.250) 

Remaining:   1  18 (1.309)  1 (0.106)  12 (1.364) 

              

Remaining:   1  18 (1.309)  1 (0.106)  12 (1.364) 

Remaining:   0  18 (1.309)  2 (0.212)  12 (1.364) 

Figure 5.20. Heuristic for reallocating processors among programs. Green-striped entries indicate 

 the program selected for receiving another processor at the end of the current step. Red-striped 

entries indicate programs not eligible to receive further processors during this stage. 

Figure 5.20 gives a sample dry-run of the heuristic we use for dynamic repartitioning. The 

first (topmost) part of the table shows the static (scalability-based) partitioning that is 
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performed when the workload is initially introduced; this gives the base allocations. In the 

second part, we check how many tasks are available in each program, and cap their 

allocations accordingly – this would require      processing overall for   programs.  

In the third part, we introduce the notion of a “score” (displayed in parentheses), which is 

taken to be the ratio of a program’s current allocation to (what would have been) its 

proportional share (according to its scalability). This score is indicative of a program’s 

relative eligibility for receiving more processors, with lower scores meriting higher 

precedence. Thus, for each available processor, we pick the program with the lowest score, 

and increment its current allocation by one. The influence of scalability on this procedure is 

seen at the steps where there are 4 and 3 processors remaining, with the allocation in both 

consecutive cases going to the leftmost program, due to its superior scalability.  

Initially, we only allow processor allocations that do not exceed the target program’s 

number of available tasks. However, if this limit is reached for all programs (due to an 

insufficiency of tasks on a workload-wide level), we proceed to the fourth part, where we 

apply the same procedure, but without the task-availability bound.  

This reallocation heuristic is implemented efficiently using a heap structure; thus, 

reallocating   processors to   programs only requires a total of          steps, plus 

some      readjustments at the end to promote contiguity among the reallocations. 

Furthermore, it is only applied when there actually exist programs in the workload that 

have insufficient tasks; in all other cases (which should constitute the vast majority), the 

repartitioning scheduler would only incur the initial      check. 

The efficacy of this strategy is equally applicable to scenarios where the workload varies 

dynamically due to programs terminating, or new ones being introduced, at arbitrary points 

in time. A program that terminates would have its processor allocation completely 

redistributed among the remaining programs; similarly, a new program would be granted 

some processors from the other programs according to its relative scalability. 

This setup thereby constitutes our “dynamically-repartitioning multiprogramming” scheme: 

A single MultiProgramScheduler is used to initialize a pinned thread on each processor, but 

maintains a distinct AffinityTaskScheduler with work-stealing task queues for each 

program, dynamically reallocating threads to programs based on their scalabilities and 

numbers of available tasks. 
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5.4 Multiprogramming Test Strategies 

To conclude our design chapters, we shall present the main test harness that we 

implemented for evaluating the efficacies of the various task schedulers and 

multiprogramming schemes.  

In our initial experiments, we used to constrain our tests such that each program in the 

multiprogram workload was only run once. Once all programs were ready, the overall 

execution time was recorded, the programs collectively reinitialized, and then another test 

started. However, this setup was not appropriate for system-level performance metrics, 

since the last program to complete would effectively be executing in single-program mode, 

causing results to get skewed by the longer-running programs. 

5.4.1 Cyclic Tests 

 

Figure 5.21. Cyclic test harness.    
   denotes the measured execution time of the  

st
 run  

of program   in single-program mode; similarly for     
   in multi-program mode. 

Once we eliminated the issue of interference arising from program reinitialization (see 

Section 4.5.1, p. 49), we could implement a cyclic test harness to accurately measure the 

programs’ performances, as depicted in Figure 5.21 (above). First, the single-program 
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execution time,    , is measured for each program by running it in isolation over the entire 

machine’s processors. The test is run 5 times for each program, and the average taken. 

For measuring the multi-program execution times,    , the test engine initializes the 

problem data for all the programs, starts the timer, and launches the programs. As soon as 

any program completes, the time elapsed is recorded, and the program immediately 

restarted (whilst the others are still executing). This process is repeated until the timer 

reaches a specified limit – after which, all subsequent timings are discarded (and programs 

no longer restarted). The number of times that each program gets to run varies; however, 

its multi-program execution time is taken as the average of all its measured timings. 

Once we have all the above measurements in place, we can calculate each program’s 

normalized turnaround time (NTT) and normalized progress (NP) per the definitions given in 

Section 2.4 (p. 17), aggregating them to get the system-level performances. 
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Chapter 6: Experimental Setup  

6.1 Hardware Platform 

We perform our experiments on a Dell PowerEdge C6145 machine, consisting of two 

processor-based servers. Each shared-memory server has four sockets with AMD Opteron 

6276 “Interlagos” processors,24 each containing 16 cores, thereby giving a total of 64 cores 

per server. Each core runs at a base frequency of 2.3 GHz and has a dedicated 1 MB L2 

cache. Each processor shares a 16 MB L3 cache among its cores, and accesses main memory 

via four HyperTransport 3.0 links, each having a peak bandwidth of 6.4 GT/s. Each server is 

equipped with 128 GB of DDR3 memory. 

 

Figure 6.1. Processor setup in the manycore servers. Each server  

consists of 64 cores organized into four 16-core processor chips. 

 

                                                           
 

24
  Note that the term “processor” is used ambiguously across the industry. AMD considers each 

chip of eight cores to collectively be a single processor, whilst software companies tend to treat 

each core as a “processor” in its own right, as evidenced in “processor affinity” discussions. As 

indicated in Section 1.4 (p. 4), we have assumed the latter convention throughout this document. 
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http://www.dell.com/downloads/global/products/pedge/en/poweredge-c6145-server-specs-en.pdf
http://www.amd.com/uk/Documents/Opteron_6000_QRG.pdf
http://www.amd.com/uk/Documents/Opteron_6000_QRG.pdf
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When submitting jobs (using the Sun Grid Engine) onto the manycore servers, we reserve 

all their cores for the entire duration of our experiment, even in the case of tests utilizing 

limited concurrency, thereby ensuring exclusive machine access. This way, we eliminate the 

risk of interference from other users or programs, allowing us to obtain reproducible 

results. 

6.2 Software Platform 

Our PowerEdge manycore has Scientific Linux 6.3 (running Linux kernel version 2.6.32 for 

x86-64) installed as its operating system. Microsoft only targets the .NET Framework for 

Windows platforms; thus, we will instead use Mono, an open-source cross-platform 

implementation of the framework.25 We initially used the latest stable release for Linux, 

Mono 2.10.8; however, this version suffered from severe performance issues when 

multithreading on multiprocessor machines (including substantial ad hoc variance in the 

execution times of identical sequential codes), as documented in our investigation posted 

to StackOverflow under “Mono multiprocessing performance issue”. We subsequently 

upgraded to the latest beta release, Mono 3.0.12, which seems to largely resolve the issue 

through its new SGen garbage collector; we use this version for all our experiments.26 

6.3 Statistical Methods 

In order to obtain sensible results that would allow us to induce sound conclusions, each 

test is run repeatedly (at least 10 times), and the execution times measured across all runs 

averaged. Some tests engender such repetition intrinsically, such as the multitude of     

readings given by each cyclic multiprogram test (as explained in Section 5.4.1, p. 76). For all 

other tests, we authored a small script to submit multiple instances of the job to the 

manycore machine (for consecutive execution), and then aggregate their results. 

 

                                                           
 

25
  The procedure for compiling Mono is described in the “Compiling Mono From Tarball” article on 

the official Mono website. 

26
  A new major stable release, Mono 3.2.0, was published on 24 July 2013. Whilst offering modest 

performance gains on commodity machines, we found that this version suffered from stability 

issues on Morar, frequently causing the job to hang, and therefore refrained from upgrading to it. 

http://www.scientificlinux.org/distributions/6x/63/
http://www.mono-project.com/
http://www.mono-project.com/Release_Notes_Mono_2.10.8
http://stackoverflow.com/q/17554945/1149773
http://www.mono-project.com/Release_Notes_Mono_3.0#New_in_Mono_3.0.12
http://www.mono-project.com/Generational_GC
http://www.mono-project.com/Compiling_Mono_From_Tarball
http://www.mono-project.com/Release_Notes_Mono_3.2
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Apart from the averages, we also calculate the standard deviation among the execution 

times of the runs for each test. Standard deviation indicates the extent of the variation, 

thereby imparting important insight about the performance’s consistency. Since our tests 

only constitute a “sample” of runs, we use the formula for sample standard deviation, 

applying Bessel’s correction. Based on this, we compute the confidence intervals for our 

measured averages, assuming a Student’s  -distribution and targeting a 99% confidence 

level. We represent the confidence intervals graphically, using error bars, in all our charts in 

Chapter 7 (below).27  

 

 

 

                                                           
 

27
  For definitions of these terms, refer to published literature on statistics, such as Statistics for 

Experimenters: Design, Innovation, and Discovery by Box et al. [52]. 
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Chapter 7: Experimental Results and Analysis 

In this chapter, we present the results of the experiments through which we evaluated the 

various aspects pertaining to our investigation, including the effects of task granularity, 

hardware concurrency, program scalability, and multiprogramming schemes. Each 

experiment is accompanied by a critical analysis that attempts to systematically explain the 

causes underlying the results, as well as compare them to related work (where applicable). 

7.1 Granularity 

In Section 4.5.2 (p. 50), we explained the notion of granularity and its influence on the 

extent of potential parallelism yielded by our D&C skeleton. In our first experiment, we 

investigate the effect of this granularity on parallel performance. We run each respective 

D&C program (with a fixed problem size) in isolation over all 64 cores, starting with a 

granularity equal to the problem size, and halving it in each subsequent test, down to 

 
      ⁄  (i.e.     ) of the problem size.  

As discussed in the aforementioned section, this ratio would typically correspond to the 

total number of execute muscle tasks that the D&C skeleton ends up with at the base case 

of the recursion. Thus, it serves as an indicator of the potential parallelism presented by the 

D&C program to the task scheduler. (In quicksort, this number is only a close approximation 

due to its unbalanced split. In Strassen multiplication, the computation is more intricate: 

ratios of   ⁄  –   ⁄  yield 7 execution muscles; ratios of   ⁄  –    ⁄  yield 49 execution 

muscles; whilst ratios of    ⁄  or lower yield 343 execution muscles, with ShouldSplit 

explicitly overridden to stop at this limit in the case of this particular program.) 
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Figure 7.1. Execution time vs. granularity for our D&C programs, run independently over 64 cores. 

A performance optimum emerges prominently towards the centre.   

Figure 7.1 presents our results. Very coarse granularities expectedly suffer from poor 

performances due to their curbed opportunity for parallel execution, thereby succumbing 

to the consequences of Amdahl’s Law [47]. As the granularity is made finer (yielding more 

parallel tasks), performances improve almost uniformly, with full machine utilization 

initially achieved at a granularity ratio of    ⁄ . However, this granularity generates as many 

execute tasks as there are logical cores on the machine, leaving no room for compensating 

against variances in their respective execution times. Consequently, the overall completion 

time of the execute phase becomes bound to its slowest task.  

This effect is most clearly demonstrated in the case of Monte Carlo Pi, where the 

substantial variance among its tasks’ execution times (as indicated through its large error 

bars) causes its performance on 64 execute tasks to be 67% slower than its best 

1

2

4

8

16

32

64

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
,0

2
4

2
,0

4
8

4
,0

9
6

8
,1

9
2

1
6

,3
8

4

3
2

,7
6

8

6
5

,5
3

6

Ex
e

cu
ti

o
n

 T
im

e
 (

s)
 

Granularity (ratio of problem size) 

Monte-Carlo-Pi

Sum-Of-Squares

Strassen-Multiply

Quick-Sort

Merge-Sort



83 

performance on 1,024 tasks.28 In the case of all programs, finer granularities mitigate this 

issue by creating an abundance of such tasks, allowing threads assigned faster-executing 

tasks to restore balance by processing more tasks overall. 

 

Figure 7.2. Execution time vs. granularity, showing region of best performances. 

Note how the performances remain largely consistent over the wide range of granularities. 

Unlike Figure 7.1, this chart’s vertical axis has a linear scale. 

The most interesting outcome from this experiment, as amplified in Figure 7.2, is that the 

good performances subsequently persist over a wide range of ever-finer granularities, only 

starting to deteriorate at ratios of       ⁄  and beyond. This result testifies to the efficiency 

of task parallelism, demonstrating that it can accommodate surplus parallelism of up to 32× 

the machine’s multiprocessing capabilities without experiencing any perceptible 

slowdowns. By comparison, informal benchmarks show that thread oversubscription by a 

factor of just 2.5× can cause a 40% slowdown for compute-bound multithreaded 

applications [32]. 
 

                                                           
 

28
  This large variance among the execute tasks of the Monte Carlo Pi program is unexpected. As 

mentioned in Section 6.2 (p. 79), the cause seems to be performance deficiencies in Mono’s 

implementation of its garbage collector on multiprocessing systems, despite that our Monte 

Carlo Pi muscle function does not instantiate any objects on the heap during its execution. 
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At granularities of       ⁄  and finer, the task parallelism overheads swamp the 

computation and cause performance to deteriorate, eventually reaching a point where the 

parallel programs would run slower than their sequential counterparts. 

On the basis of these results, we configured our system to aim for granularities that would 

result in approximately 4 execute muscles per core for each program (as discussed in 

Section 4.5.2, p. 51). Whilst Figure 7.2 (above) suggests that the best performances are 

achieved when targeting 16 execute muscles per core (as similarly recommended by 

Campbell et al. [34]), this only applies when the programs are run in isolation, leading us to 

scale it down in anticipation for the multiprogramming tests. 

7.2 Scalability 

In our next experiment, we evaluate our parallel programs’ respective scalabilities by 

measuring their speedups when executed (in isolation) over various degrees of physical 

concurrency. For each program, we first measure the sequential execution time, which 

involves processing the entire problem through a single ExecuteMuscle call (run on a single 

core). Then, we initialize an AffinityTaskScheduler whose number of pinned threads 

(over distinct contiguous cores) is gradually increased over consecutive tests, up to a 

maximum of 64 (representing full utilization of our manycore machine). We measure the 

parallel execution times, and obtain the speedups by calculating the factor by which they 

reduce the sequential execution time (as defined in Section 2.4, p. 17). 
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Figure 7.3. Speedup vs. concurrency for our parallel programs executed over  

various numbers of contiguously-allocated cores on the 64-core machine 

Figure 7.3 presents the observed scalabilities, with results corroborating the predictions we 

made throughout Section 4.4 (p. 41). Our Monto Carlo Pi and sum-of-squares (map–reduce) 

programs exhibit near-linear speedups, achieving parallel efficiencies of 90% and 89% 

(compared to the optimal) on 64 cores. Both of these programs are embarrassingly parallel, 

with their split and merge operations constituted of trivial computations (such as the 

summation of a small quantity of integers in the latter), thereby lending themselves to high 

scalabilities. Strassen multiplication shows moderate scalability, due to the submatrix 

additions that need to be performed sequentially during its split and merge operations. 

Finally, quicksort and mergesort give relatively low scalabilities, due to the sequential      

sweeps over the  -element arrays required in their split (for quicksort) or merge (for 

mergesort) operations. 

The above results also permit us to evaluate the implementational efficiency of our D&C 

skeleton when compared against other published results. In their investigation of 

Skandium’s performance over 16 cores, Tsogkas [48] reports speedups of 6.0× for quicksort 

and 4.8× for mergesort. Our counterpart D&C programs achieve speedups of 8.8× and 8.3× 

respectively over the same number of cores, which constitute an improvement of 46% and 
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71% over Tsogkas’s results. Separately, Leyton & Piquer [25] report a 3.4× speedup when 

using Skandium to run parallel quicksort over 8 cores, whilst Leijen et al. [8] improve this to 

5.1× using TPL (as already mentioned in Section 3.1.2, p. 24). Our corresponding speedup of 

6.0× (which is 74% efficient) outperforms them by 75% and 17% respectively.29 

7.2.1 Contiguous vs. Dispersed Allocation 

In Section 5.1.3 (p. 57), we mentioned that contiguous core allocations could cause 

memory-intensive programs to suffer performance bottlenecks due to the shared off-chip 

bandwidth [51]. Therefore, we repeat our scalability experiments using a dispersed 

allocation (as depicted in Figure 5.3, p. 58) in order to compare its performance. 

Figure 7.4 (below) presents the speedups resulting from the two allocations for up to 16 

threads. The dispersed allocation consistently outperforms the contiguous one, since the 

threads can take advantage of the memory bandwidth from across all the processor chips. 

The most interesting case is sum-of-squares (a map–reduce), our most memory-intensive 

program, which improves its 16-thread speedup from 14.9× to 15.9× when dispersed, 

overtaking Monte Carlo Pi and achieving an efficiency of 99%. 

At the same time, we note that the performance improvements, albeit significant, scale 

only modestly with respect to the available memory bandwidth. Even in the case of sum-of-

squares, a 4× increase in bandwidth only yielded a 7% improvement. A possible 

interpretation of this result is that our programs are much more compute-bound than 

memory-bound, making physical concurrency (i.e. number of cores) the dominant factor in 

their performance, not memory bandwidth.  

An alternate explanation revolves around the non-uniform memory access (NUMA) 

architecture of our manycore machine. Since each program’s problem data is initialized 

(before the test) sequentially on the main thread, it might have been allocated entirely to 

the memory module associated with its processor. Consequently, any memory access 

requests would still need to be handled by a single memory controller, which therefore 

 

                                                           
 

29
  These comparisons are subject to undiscussed experimental variations, such as problem sizes, 

and therefore do not fulfil the ceteris paribus assumption that would be expected of a proper 

scientific investigation. For this reason, these comparisons should be taken as merely informal 

observations. 
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becomes a performance bottleneck cancelling the benefits of the increased overall memory 

bandwidth. 

 

 

Figure 7.4. Speedup vs. concurrency for contiguous vs. dispersed allocation  

of pinned threads over cores of the 64-core machine 
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7.3 D&C Phases 

Sasaki et al. [13] evaluate their parallel programs’ scalabilities empirically, relying on 

instrumentation to measure their progress through cumulative retired instructions, but 

treating their underlying algorithmic structure as a black box. This limits the opportunity for 

interpreting results analytically. Given that we are investigating a specific class of parallel 

programs – namely, divide-and-conquer – we endeavoured to delve deeper and study the 

performance characteristics of our applications as they traverse the D&C recursion graph. 

To this end, we introduced execution hooks into our D&C skeleton so that our system could 

transparently collect statistics about the individual execution times of the split, execute, 

and merge functions. 

Figure 7.5 (below) presents each phase’s cumulative execution time (as summed across all 

tasks) for each program respectively. Again, the results corroborate our predictions from 

Section 4.4 (p. 41). Monte Carlo Pi, sum-of-squares, and mergesort keep splitting (with a 

branching factor of 2) until Level 8, switching to their execute phase at Level 9 (with 256 

execute tasks, being   ). Quicksort, on the other hand, transitions from its split to its 

execute phase gradually along Levels 8–11. As explained in Section 4.5.2 (p. 50), its 

unbalanced splits cause some recursion paths to produce subproblems with sizes meeting 

the target granularity earlier than others. Finally, Strassen multiplication (with a branching 

factor of 7) switches to the execution phase at Level 4 (where it would have 343 execution 

tasks, being   ). 

Monte Carlo Pi and sum-of-squares incur negligible computation in their split and merge 

phases, taking at most 3 ms and 29 ms for their Level 8 merge (involving the summation of 

128 pairs of integers); over 99.9% of their time is spent in the execute phase. Strassen 

multiplication incurs considerable computation in both its split and its merge phases, 

constituting 14% and 3% of its overall time respectively. However, 87% of its split phase is 

spent at Level 3, where it would already have 49-way parallelism (through    split tasks), 

thereby mitigating its effect on scalability. 
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Figure 7.5. Cumulative execution times of tasks in each D&C phase.  

The vertical axes are logarithmic so as to allow small values to be visible. 
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Finally, quicksort and mergesort incur substantial computation in their split and merge 

phases respectively, constituting 31% and 25% of their overall times. In their case, this 

computation is spread out more or less evenly across all their levels, since each level entails 

a fresh sweep over the entire array of elements (albeit divided among varying numbers of 

parallel tasks). Quicksort’s split noticeably starts to taper off in the final levels, as some 

recursion paths would have transitioned to the execute phase.  

7.4 Symmetric Tests 

As a precursor to our multiprogramming tests, we ran some experiments to evaluate how 

our parallel programs would individually fare in a multiprogrammed context. In each 

symmetric test, we initialize a workload of 8 instances of the same given program 

(initialized with different random problems), and measure their execution times when run 

concurrently, over 64 cores, under the various multiprogramming schemes described in 

Section 5.2 (p. 58) and Section 5.3 (p. 64). 

 

Figure 7.6. MNTT for symmetric tests involving 8 instances of the same program executed  

concurrently over 64 cores (lower is better). Under most multiprogramming schemes,  

low-scalability programs perform better than high-scalability ones. 
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Figure 7.6 (above) reveals some interesting trends. In general, the normalized performance 

of the low-scalability programs is drastically better than that of the high-scalability 

programs when run under an 8-instance workload. Under most schemes, quicksort and 

mergesort exhibit an MNTT of 2–3, whilst Monte Carlo Pi and sum-of-squares often have an 

MNTT of 7–8, which is only slightly better than if the 8 instances were to be executed 

consecutively in isolation.  

This result is intuitive. High-scalability programs, by definition, can make efficient utilization 

of any number of cores they are assigned, leaving little opportunity for improvement 

through scaling down. On the other hand, low-scalability programs exhibit diminishing 

returns over larger numbers of cores; thus, when their effective concurrency is implicitly 

reduced due to contention with other program instances, their efficiencies would 

substantially improve. 

There is a large performance difference between the two thread-oversubscription schemes. 

Despite both causing an average oversubscription of 8 threads per core, the free scheme – 

which leaves the operating system’s thread scheduler at liberty to distribute the threads 

among the cores – outperforms the pinned scheme by 20–30% for the three high-

scalability programs, and by around 65% for the low-scalability ones. This demonstrates 

that the thread scheduler performs an adequate job at boosting performance through 

thread migration. 

Note that, in the measurements reported for our statically- or dynamically-partitioning 

multiprogram scheduler in this and subsequent tests, we do not include the execution time 

it required for initially measuring each program’s scalability (per the procedure described in 

Section 5.3.2, p. 67). We feel that this omission is justified, since the said overhead is 

conceptually analogous to a compile-time (rather than run-time) cost. Once the scalability 

for a particular D&C program has been measured over a representative problem, it may be 

reused indefinitely for processing similar problems (through the same program), thereby 

amortizing its cost. 
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Figure 7.7. MNTT for symmetric tests of low-scalability programs.  

Static partitioning achieves the best performance by a small margin.  

Finally, Figure 7.7 considers the performances of just the two low-scalability programs, and 

shows that our statically-partitioned scheduler has the potential to outperform all other 

schemes (albeit not by a statistically-significant margin). In this case, since each workload 

consists of instances of the same program, the partitioning would be egalitarian (with each 

instance receiving an equal number of cores). 

7.5 Cyclic Tests 

The main experiments of our project involve running cyclic tests, as described in 

Section 5.4.1 (p. 76). 

7.5.1 Full Program Suite 

Initially, we run our cyclic tests over multiprogram workloads comprising all our five parallel 

programs. The cyclic tests differ from the symmetric tests of the previous section in that 

they only run a single instance of each program, but mix the different programs into the 

same workload, and execute them repeatedly for a total time interval of 8 minutes (chosen 

empirically such that each program would get to run around 100 times in each test). 
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Figure 7.8. NTTs of our 5-program workload (lower is better).  

Shared-scheduler schemes favour low-scalability programs and suffer the  

worst variances. All other schemes favour high-scalability programs. 

 

Figure 7.9. NPs of our 5-program workload (higher is better) 
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Figure 7.8 and Figure 7.9 (above) present the NTTs and NPs of our respective programs 

under this multiprogram workload. In the thread-oversubscription schemes, as well as our 

processor-partitioning schemes, higher-scalability programs perform better than lower-

scalability ones. However, the trend is completely reversed in the shared-scheduler 

schemes (which include the default scheduler), where the low-scalability programs perform 

best. 

Another interesting observation pertains to the variances among consecutive runs of the 

same program under the various schemes, as depicted through the error bars. Shared-

scheduler schemes incur the worst variances, with the relative standard deviations (RSD) of 

the various programs’ NTTs averaging 38%. This is reduced to 18% in the thread-

oversubscription schemes, 13% in our dynamically-repartitioning scheme, and merely 7% 

in our statically-partitioned scheme.  

This result can be explained through a number of factors. Shared-scheduler schemes suffer 

from inherently volatile performances, since minor timing fluctuations during the execution 

of the task scheduler’s work-stealing logic can lead to large differences in the overall task 

assignment among threads. Oversubscription schemes benefit from the thread scheduler’s 

goal of promoting fairness. Finally, processor partitioning ensures that each program has its 

own unique set of processors, making its performance much more deterministic. Dynamic 

repartitioning introduces some unpredictability, but only insofar as there is an insufficiency 

of available tasks in some programs. 
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Figure 7.10. ANTT of our 5-program workload (lower is better).  

Best system-level performance is achieved by the shared-scheduler schemes. 

 

Figure 7.11. STP of our 5-program workload (higher is better) 
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Figure 7.10 and Figure 7.11 present the system-level metrics for our 5-program workload. 

The best performance is given by the shared-scheduler schemes, in which our 

AffinityTaskScheduler outperforms the default scheduler by 6% in terms of STP. The 

thread-oversubscription scheme with free threads is 10% faster than the one which pins 

them, again showing that the operating system’s thread scheduler makes beneficial 

decisions on thread migration. Notwithstanding, the free oversubscription scheme is still 

20% slower than the shared scheduler, which is strong evidence that work-stealing task 

scheduling can significantly outperform the thread scheduler for compute-intensive 

programs. Our dynamically-repartitioning scheduler is 6% faster than when statically 

partitioned. However, it is 24% slower than the shared scheduler, thereby seemingly 

rebutting our hypothesis. 

7.5.2 Low- to Moderate-Scalability Subset 

Sasaki et al. [13], citing Bhadauria & McKee [53], observe that: 

“Minimizing ANTT means that all the programs are fairly achieving high 

performance compared to its peak performance (achievable only when 

occupying the whole system by itself). Therefore, programs that scale almost 

linearly […] are removed from the [multiprogram coscheduler] and run in 

isolation, or gang-scheduling.”  — Sasaki et al. [13] 

On this basis, we altered our experiment to remove the highly-scalable programs (Monte 

Carlo Pi and sum-of-squares), and rerun the cyclic tests with just the moderate- and low-

scalability ones (Strassen multiplication, quicksort, and mergesort). 
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Figure 7.12. NTTs of our 3-program workload (lower is better) 

 

Figure 7.13. NPs of our 3-program workload (higher is better) 
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Figure 7.14. ANTT of our 3-program workload (lower is better).  

Best system-level performance is now achieved by our repartitioning multiprogram scheduler. 

 

Figure 7.15. STP of our 3-program workload (higher is better) 
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Figure 7.12 to Figure 7.15 (above) present the results of this workload involving just 

moderately- and poorly-scalable programs. In this case, our repartitioning scheduler does 

achieve the best performance from among all multiprogramming schemes, outperforming 

the default scheduler by a solid 5½% in terms of STP, thereby confirming our hypothesis 

that scalability-based partitioning can be beneficial for task-parallel programs. Meanwhile, 

its performance also constitutes a 2% improvement over both the shared scheduler and 

the free oversubscription scheme, with the result being statistically significant at 99% 

confidence (when averaged over 21 runs). 

7.5.3 Comparison with Related Work 

One of our initial goals was to reproduce the results obtained by Sasaki et al. [13], but 

applied to task-parallel programs. Our experiments are most directly comparable to the 

results presented in Section 5.2 of their paper, where they investigate the performance of 

their scalability-based manycore partitioning (SBMP) scheduler, with phase prediction 

enabled, on multiprogram workloads involving parallel programs with multiple phases. 

Their phase prediction capability plays a role quite similar to our task-availability-based 

repartitioning (discussed in Section 5.3.4, p. 72).30 Their SBMP scheduler “significantly 

outperforms” the Linux thread scheduler by 6% in terms of ANTT. 

Our repartitioning scheduler, on the other hand, only outperforms the Linux thread 

scheduler (as leveraged within the free oversubscription scheme) by 2.6% in ANTT. There 

are several factors that could account for this shortcoming. Due to the efficiency of our 

D&C skeleton’s asynchronous execution, all our programs exhibit relatively clean 

scalabilities, with speedups continuing to increase monotonically up to 64 cores (as shown 

in Figure 7.3, p. 85). This is not the case for the PARSEC benchmark used by Sasaki et 

al. [13], several of whose programs suffer from erratic scalabilities (see Figure 7.16 below), 

particularly within the “Yellow” and “Red” groups, which are the focus of their SBMP 

scheduler. This poor performance of the benchmark programs affords the SBMP scheduler 

more room for their improvement. 

 

                                                           
 

30
  The core donation technique suggested by Sasaki et al. [13] is not relevant to our experiments, 

since it is intended for applications exhibiting “low CPU utilization”. 
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Figure 7.16. Scalabilities of PARSEC benchmarks. Copied from Sasaki et al. [13]. 

Furthermore, given that our D&C skeleton is implemented to use task parallelism rather 

than explicit threading, all our tests run on top of a work-stealing task scheduler. This 

includes the free oversubscription scheme that we have adopted as our baseline, which 

simply initializes such a scheduler (with a full contingent of threads) for each program in the 

workload. The performance benefits of work-stealing task schedulers (discussed in 

Section 3.1.2, p. 22) are well-established, both in research and in industry [7], [8], [46].  

(For example, Tsogkas [48] observed that a task-parallel mergesort could outperform an 

explicitly-threaded one by 45% on 16 cores.31) Thus, it is reasonable to assume that this 

work-stealing logic reaps most of the benefits to be had from cache reuse (due to the data 

locality arising from its LIFO pushing/popping) and dynamic load-balancing (from its FIFO 

work-stealing), leaving us limited opportunity for further improvement. Sasaki et al. [13], on 

the other hand, use explicitly-threaded applications [54], which are likely to be more 

amenable to performance boosts from improved data locality. 

Several of our programs – particularly, sum-of-squares, quicksort, and mergesort – work on 

sample problems that have large memory footprints (256 or 512 MB). Since they would be 

continuously scanning arrays at least an order of magnitude larger than the processor 

caches, their working sets are transient, making them unlikely to enjoy significant benefits 

from the cache reuse promoted by processor partitioning. 

  

 

                                                           
 

31
  For their task-parallel tests, Tsogkas used the Skandium library, whose task scheduler uses a 

centralized queue, meaning that even better results might have been possible through  

work-stealing.  
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Finally, our system was built on the high-level programming platform presented by the 

.NET Framework, and therefore needs to run on Mono when tested on our Linux-based 

manycore machine. This introduces overheads and unpredictability due to the mechanisms 

supporting the higher level of abstraction, including the garbage collector, which can kick in 

and temporarily stall the system at arbitrary points in time. The PARSEC benchmark suite, 

being written in C/C++ [54], can largely avoid these issues. 
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Chapter 8: Conclusion 

To close off our dissertation, we shall recapitulate the main achievements of our project. 

We then present a number of potential improvements and future work for our system, and 

conclude with some final remarks. 

8.1 Achievements 

By architecting a fresh implementation of the divide-and-conquer skeleton atop the task 

infrastructure of the Task Parallel Library (TPL) in the .NET Framework, we have 

demonstrated the design benefits of layered parallel abstractions (Section 2.2, p. 9).  

In particular, this layering permits our skeleton to implicitly reap the performance gains of 

the separately-developed work-stealing task scheduler. By contrast, Skandium adopts a 

stovepipe approach, whereby it implements its own task-scheduling logic using a 

centralized queue [25], enabling our implementation to outperform it by 75%.32 

By optimizing our D&C skeleton to use asynchronous parallelism (Section 4.2.2, p. 35), we 

effectively eliminated almost all instances of blocking from our system. The skeleton uses 

an atomic decrement (rather than a blocking primitive) to identify when to spawn the 

merge tasks. The programs themselves do not use any explicit synchronization at all, relying 

on the skeleton to direct their entire execution flow. This execution efficiency has given us a 

17% improvement over traditional fork–join implementations for divide-and-conquer 

algorithms on TPL [8]. 

Our combination of structured parallelism (offered by the D&C skeleton) with functional-

style programming (through C# lambda expressions and LINQ) engendered a declarative 

programming model whose expressive power was demonstrated through our succinct 8-

line parallel quicksort implementation (Section 4.1.4, p. 31). 

Through our comparison of multiprogramming schemes, we have established that sharing a 

single work-stealing task scheduler among all concurrent programs (and thereby 

 

                                                           
 

32
  As has been already mentioned on p. 86, the comparisons in this section do not account for 

experimental variations, such as problem sizes, and should only be treated as casual 

observations. 
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eliminating thread oversubscription altogether) can outperform the Linux thread scheduler 

by 25% for multiprogram workloads containing variable scalabilities (Section 7.5.1, p. 92).  

Our main achievement lies in our novel multiprogram scheduler, which unifies the designs 

of work-stealing task-scheduling and scalability-based processor-partitioning into a single 

component that can draw on the performance benefits of both (Section 5.3, p. 64). This 

scheduler has been engineered to work for any arbitrary multiprogram workload, including 

unseen programs (other than the five we have considered). However, it is best-suited for 

workloads comprised of low- to moderate-scalability programs, where it has been shown to 

outperform the TPL default task scheduler by 5½%, and the Linux thread scheduler by 2% 

(Section 7.5.2, p. 96). 

8.2 Potential Improvements and Future Work 

The most significant shortcoming of our scalability-based processor-partitioning technique 

is the simplified manner in which it evaluates scalability (Section 5.3.2, p. 66). Whilst this 

was, to an extent, acceptable for our suite of cleanly-scalable programs, it would give rise 

to issues if employed over programs exhibiting erratic scalabilities, such as the PARSEC 

benchmark (Figure 7.16, p. 100). Therefore, our partitioning strategy should be upgraded to 

use a hill-climbing heuristic over a populated scalability table, as is done by Sasaki et 

al. [13]. 

High-performance computing on manycore machines would inevitably benefit when the 

software developers align their systems according to the physical characteristics of the 

underlying hardware platform. For example, Sasaki et al. [13], running their experiments on 

a 48-core machine comprised of eight 6-core processor dies, restricted their scheduler to 

use the said 6-core die “as a minimum unit of allocation to programs” [13]. Since our 

manycore consisted of just four 16-core processor chips, we could not afford to impose 

such a chip-level restriction; however, this left us susceptible to negative interference 

among programs executing on cores belonging to the same chip. If our scheduler were to 

be run on a manycore machine that has a finer distribution of cores, then it should be 

modified to perform such alignment along processor chip boundaries. 

A design limitation concerns the rigidity of the D&C skeleton. When developing the Strassen 

matrix multiplication program (Section 4.4.3, p. 45), we found that the skeleton’s interface 
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did not allow us to parallelize the submatrix additions (specified within the  –     

computations) as part of the spawned subtasks; rather, these had to be performed 

sequentially within the parent split operation. This restriction caused a performance 

penalty, with the split phase accounting for 14% of the program’s overall execution time 

(Section 7.3, p. 88). By extending the skeleton’s interface to permit multiple definitions of 

the recursive case (in this case, one for the first level, and one for all subsequent levels), the 

issue could have been avoided. 

In Section 4.5.3 (p. 53), we presented the reasons why we did not employ nested 

parallelism in our skeletal designs. In production scenarios, it would obviously be desirable 

to maximize machine utilization at all levels of the recursion, by parallelizing the split 

and/or merge operations as well, as depicted in Figure 8.1 (below). 

 

Figure 8.1. Nested parallelism attained by embedding sub-skeletons within the split and merge 

operations of the top-level D&C skeleton. Using this approach, full concurrency may be  

achieved at all levels of the recursion.  

Nested parallelism may be achieved by: replacing the split and/or merge muscles with 

nested sub-skeletons [25] (typically of other skeleton types, such as map–reduce); 
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developing “fused” skeletons that support this composite parallelism natively [31]; or 

introducing ad hoc parallelism at the program level [35] (such as through explicitly-spawned 

subtasks). 

8.3 Closing Remarks 

At its core, the design of this project was an exercise in architectural layering through 

structured parallelism. We principally worked at three layers: the task scheduler (for 

distributing tasks onto processors), the D&C skeleton evaluator (for generating task 

graphs), and the actual program instances (for expressing the problem-domain logic). One 

of the outcomes that struck us during this experience was the ease and confidence with 

which extensive changes could be applied to the components of a given layer without 

affecting the other layers, despite their close interdependence for the run-time execution.   

The object-oriented programming (OOP) paradigm that currently pervades the software 

industry encourages applications to be designed using a functional layering that is often 

orthogonal to parallelism. Any necessary parallelization would typically be bolted-on late in 

the development process, giving rise to “spaghetti code”–like behaviour, with threads 

darting sporadically across different objects. This often breaks the notion of encapsulation, 

since any threading issues that need to be debugged (such as deadlocks) would require the 

developer to trace the threads’ entire flow across the otherwise-unrelated classes.  

Through this project, we have demonstrated that layered parallelism can serve not only as 

an adequate multi-level abstraction for aiding software developers writing parallel 

programs, but also as a rich source of structural information for transparently boosting the 

system’s parallel performance. 
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